

ThinkCore W311/321/341 Linux User’s Manual

Second Edition, March 2007

www.moxa.com/product

MOXA Systems Co., Ltd.
Tel: +886-2-2910-1230
Fax: +886-2-2910-1231
Web: www.moxa.com

MOXA Technical Support
Worldwide: support@moxa.com

http://www.moxa.com/product
http://www.moxa.com/
mailto:support@moxa.com

ThinkCore W311/321/341 Linux User’s Manual
The software described in this manual is furnished under a license agreement and may be used only in

accordance with the terms of that agreement.

Copyright Notice

Copyright © 2007 Moxa Systems Co., Ltd.
All rights reserved.

Reproduction without permission is prohibited.

Trademarks

MOXA is a registered trademark of The Moxa Group.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the
part of MOXA.

MOXA provides this document “as is,” without warranty of any kind, either expressed or implied, including, but
not limited to, its particular purpose. MOXA reserves the right to make improvements and/or changes to this
manual, or to the products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, MOXA assumes no
responsibility for its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the
publication.

Table of Contents
Chapter 1 Introduction ..1-1

Overview.. 1-2
Software Architecture .. 1-2

Journaling Flash File System (JFFS2).. 1-3
Software Package ... 1-4

Chapter 2 Getting Started ...2-1
Powering on the W311/321/341... 2-2
Connecting the W311/321/341 to a PC.. 2-2

Serial Console .. 2-2
Telnet Console.. 2-3
SSH Console .. 2-4

Configuring the Ethernet Interface .. 2-5
Modifying Network Settings with the Serial Console .. 2-5
Modifying Network Settings over the Network ... 2-6

Configuring the WLAN ... 2-6
IEEE802.11a/b/g .. 2-6

Using WPA_SUPPLICANT to Support WPA and WPA2...2-11
SD Slot and USB for Storage Expansion..2-11
Test Program—Developing Hello.c ... 2-13

Installing the Tool Chain (Linux)... 2-13
Checking the Flash Memory Space .. 2-13
Compiling Hello.c .. 2-14
Uploading and Running the “Hello” Program.. 2-15

Developing Your First Application .. 2-15
Testing Environment .. 2-16
Compiling tcps2.c... 2-17
Uploading and Running the “tcps2-release” Program.. 2-18
Testing Procedure Summary .. 2-20

Chapter 3 Managing Embedded Linux ..3-1
System Version Information... 3-2
System Image Backup.. 3-2

Upgrading the Firmware... 3-2
Loading Factory Defaults ... 3-5
Backing Up the User Directory .. 3-5
Deploying the User Directory to Additional W311/321/341 Units 3-6

Enabling and Disabling Daemons.. 3-6
Setting the Run-Level .. 3-8
Adjusting the System Time.. 3-9

Setting the Time Manually ... 3-9
NTP Client.. 3-10
Updating the Time Automatically... 3-10

Cron—Daemon to Execute Scheduled Commands ..3-11

Chapter 4 Managing Communications ..4-1
Telnet / FTP ... 4-2
DNS ... 4-2
Web Service—Apache ... 4-2
Installing PHP for Apache Web Server .. 4-4
IPTABLES ... 4-7
NAT...4-11

NAT Example ... 4-11
Enabling NAT at Bootup .. 4-12

Dial-up Service—PPP.. 4-12
PPPoE .. 4-15
NFS (Network File System)... 4-17

Setting up the W311/321/341 as an NFS Client ... 4-18
Mail.. 4-18
SNMP .. 4-18
OpenVPN... 4-27

Chapter 5 Tool Chains for Application Development...5-1
Linux Tool Chain ... 5-2

Steps for Installing the Linux Tool Chain... 5-2
Compilation for Applications ... 5-2
On-Line Debugging with GDB .. 5-3

Windows Tool Chain.. 5-4
System Requirements for Windows Tool Chain... 5-4
Steps for Installing Windows Tool Chain ... 5-4
Using the BASH Shell.. 5-9
Compilation for Applications ... 5-10
On-Line Debugging with Insight.. 5-12

Chapter 6 Programmer’s Guide..6-1
Flash Memory Map.. 6-2
Device API... 6-2
RTC (Real Time Clock) ... 6-2
Buzzer .. 6-3
WDT (Watch Dog Timer) .. 6-3
UART... 6-7
DO ... 6-8

Chapter 7 Software Lock...7-1

Chapter 8 UC Finder ..8-1
Windows UC Finder .. 8-2

Installing the Software.. 8-2
Broadcast Search .. 8-3

Linux ucfinder.. 8-4

Appendix A System Commands... A-1
busybox (V0.60.4): Linux normal command utility collection... A-1

File manager .. A-1
Editor... A-1
Network... A-1
Process... A-2
Other.. A-2
MOXA special utilities.. A-2

Appendix B Service Information... B-1
MOXA Internet Services..B-2
Problem Report Form ..B-3
Product Return Procedure ..B-4

11
Chapter 1 Introduction

The MOXA ThinkCore W311/321/341 are RISC-based ready-to-run wireless embedded computers
with 802.11a/b/g WLAN, one 10/100 Mbps Ethernet port, an internal SD socket, 1/2/4
RS-232/422/485 serial ports, two USB 2.0 hosts, one relay output channel, and pre-installed Linux
operating system. The W311/321/341 offer high performance communication and unlimited
storage in a super compact, palm-size ARM9 box. The ThinkCore W300 Series is the right
solution for embedded applications that are used in hard-to-wire environments and that require a
large amount of memory, but that must be housed in a small space without sacrificing
performance.

The following topics are covered in this chapter:

 Overview
 Software Architecture

 Journaling Flash File System (JFFS2)
 Software Package

ThinkCore W311/321/341 Linux User’s Manual Introduction

 1-2

Overview
The ThinkCore W311/321/341 wireless embedded computers support 802.11a/b/g wireless LANs
with data encryption functions, including the common WEP and powerful WPA and WPA2, to
establish a secure transmission tunnel over a WLAN.

ThinkCore W300 Series Embedded Computers use a MOXA ART 192 Mhz RISC CPU. Unlike
the X86 CPU, which uses a CISC design, the RISC architecture and modern semiconductor
technology provide these embedded computers with a powerful computing engine and
communication functions, but without generating a lot of heat. A 16 MB NOR Flash ROM and
on-board SDRAM (64 MB for W341 and 32 MB for W311/321) give you enough memory to
install your application software directly on the embedded computer. In addition, dual LAN ports
are built right into the RISC CPU. This network capability, in combination with the ability to
control serial devices, makes the ThinkCore W300 Series ideal as communication platforms for
data acquisition and industrial control applications.

The pre-installed Linux operating system (OS) provides an open software operating system for
your software program development. Software written for desktop PCs can be easily ported to the
computer with a GNU cross compiler, without needing to modify the source code. The OS, device
drivers (e.g., serial and buzzer control), and your own applications, can all be stored in the NOR
Flash memory.

Software Architecture
The Linux operating system that is pre-installed in the W311/321/341 follows the standard Linux
architecture, making it easy to accept programs that follow the POSIX standard. Program porting
is done with the GNU Tool Chain provided by MOXA. In addition to Standard POSIX APIs,
device drivers for the USB storage, buzzer and Network controls, and UART are also included in
the Linux OS.

AP

API

Protocol
Stack

Device
Driver

Microkernel

User Application Daemon (Apache, Telnet, FTPD, SNMP)

Application Interface (POSIX, Socket, Secure Socket)

TCP, IP, UDP, CMP, ARP, HTTP, SNMP, SMTP

PCMCIA, CF, WLAN, USB, UART, RTC, LCM, Keypad

Memory control, Schedule, Process

RS-232/422/485, Ethernet, PCMCIA, CompactFlash, USB

File
System

Hardware

O
S

K
er

ne
l

The W311/321/341’s built-in Flash ROM is partitioned into Boot Loader, Linux Kernel, Root
File System, and User directory partitions.

In order to prevent user applications from crashing the Root File System, the W311/321/341 use a
specially designed Root File System with Protected Configuration for emergency use. This
Root File System comes with serial and Ethernet communication capability for users to load the

ThinkCore W311/321/341 Linux User’s Manual Introduction

 1-3

Factory Default Image file. The user directory saves the user’s settings and application.

To improve system reliability, the W311/321/341 have a built-in mechanism that prevents the
system from crashing. When the Linux kernel boots up, the kernel will mount the root file system
for read only, and then enable services and daemons. At the same time, the kernel will start
searching for system configuration parameters via rc or inittab.

Normally, the kernel uses the Root File System to boot up the system. The Root File System is
protected, and cannot be changed by the user. This type of setup creates a “safe” zone.

For more information about the memory map and programming, refer to Chapter 6, Programmer’s
Guide.

Journaling Flash File System (JFFS2)
The Root File System and User directory in the flash memory is formatted with the Journaling
Flash File System (JFFS2). The formatting process places a compressed file system in the flash
memory. This operation is transparent to the user.

The Journaling Flash File System (JFFS2), which was developed by Axis Communications in
Sweden, puts a file system directly on the flash, instead of emulating a block device. It is designed
for use on flash-ROM chips and recognizes the special write requirements of a flash-ROM chip.
JFFS2 implements wear-leveling to extend the life of the flash disk, and stores the flash directory
structure in the RAM. A log-structured file system is maintained at all times. The system is always
consistent, even if it encounters crashes or improper power-downs, and does not require fsck (file
system check) on boot-up.

JFFS2 is the newest version of JFFS. It provides improved wear-leveling and garbage-collection
performance, improved RAM footprint and response to system-memory pressure, improved
concurrency and support for suspending flash erases, marking of bad sectors with continued use of
the remaining good sectors (enhancing the write-life of the devices), native data compression
inside the file system design, and support for hard links.

The key features of JFFS2 are:

 Targets the Flash ROM Directly
 Robustness
 Consistency across power failures
 No integrity scan (fsck) is required at boot time after normal or abnormal shutdown
 Explicit wear leveling
 Transparent compression

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The file system
will remain in a consistent state across power failures and will always be mountable. However, if
the board is powered down during a write then the incomplete write will be rolled back on the next
boot, but writes that have already been completed will not be affected.

Additional information about JFFS2 is available at:
http://sources.redhat.com/jffs2/jffs2.pdf
http://developer.axis.com/software/jffs/
http://www.linux-mtd.infradead.org/

http://sources.redhat.com/jffs2/jffs2.pdf
http://developer.axis.com/software/jffs/
http://www.linux-mtd.infradead.org/

ThinkCore W311/321/341 Linux User’s Manual Introduction

 1-4

Software Package
Boot Loader Moxa Boot Loader (v1.2)
Kernel Linux 2.6.9
Protocol Stack ARP, PPP, CHAP, PAP, IPv4, ICMP, TCP, UDP, DHCP, FTP, SNMP

V1/V3, HTTP, NTP, NFS, SMTP, SSH 1.0/2.0, SSL, Telnet, PPPoE,
OpenVPN

File System JFFS2, NFS, Ext2, Ext3, VFAT/FAT
OS shell command Bash
Busybox Linux normal command utility collection
Utilities
tinylogin login and user manager utility
telnet telnet client program
ftp FTP client program
smtpclient email utility
scp Secure file transfer Client Program
Daemons
pppd dial in/out over serial port daemon
snmpd snmpd agent daemon
telnetd telnet server daemon
inetd TCP server manager program
ftpd ftp server daemon
apache web server daemon
sshd secure shell server
openvpn virtual private network
openssl open SSL
Linux Tool Chain
Gcc (V3.3.2) C/C++ PC Cross Compiler
GDB (V5.3) Source Level Debug Server
Glibc (V2.2.5) POSIX standard C library
Windows Tool Chain
Gcc (V3.3.2) C/C++ PC Cross Compiler
Glibc(V2.2.5) POSIX standard C library
Insight (V6.1) Windows environment source level debug utility

22
Chapter 2 Getting Started

In this chapter, we explain how to connect the W311/321/341, how to turn on the power, how to
get started programming, and how to use the W311/321/341’s other functions.

The following topics are covered in this chapter:

 Powering on the W311/321/341
 Connecting the W311/321/341 to a PC

 Serial Console
 Telnet Console
 SSH Console

 Configuring the Ethernet Interface
 Modifying Network Settings with the Serial Console
 Modifying Network Settings over the Network

 Configuring the WLAN
 IEEE802.11a/b/g

 Using WPA_SUPPLICANT to Support WPA and WPA2
 SD Socket and USB for Storage Expansion
 Test Program—Developing Hello.c

 Installing the Tool Chain (Linux)
 Checking the Flash Memory Space
 Compiling Hello.c
 Uploading and Running the “Hello” Program

 Developing Your First Application
 Testing Environment
 Compiling tcps2.c
 Uploading and Running the “tcps2-release” Program
 Testing Procedure Summary

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-2

Powering on the W311/321/341
Connect the SG wire to the shielded contact located in the upper left corner of the W311/321/341,
and then power on the computer by connecting it to the power adaptor. It takes about 30 to 60
seconds for the system to boot up. Once the system is ready, the Ready LED will light up.

NOTE After connecting the W311/321/341 to the power supply, it will take about 30 to 60 seconds for
the operating system to boot up. The green Ready LED will not turn on until the operating
system is ready.

ATTENTION

This product is intended to be supplied by a Listed Power Unit with output marked “LPS” and
rated for 12-48 VDC, 600 mA (minimum requirements).

Connecting the W311/321/341 to a PC
There are two ways to connect the W311/321/341 to a PC: through the serial console and by
Telnet over the network.

Serial Console
The serial console gives users a convenient way of connecting to the W311/321/341. This method
is particularly useful when using the computer for the first time. The serial console is useful for
connecting the W311/321/341 when you do not know either of the two IP addresses.

Use the serial console port settings shown below.

Baudrate 115200 bps
Parity None
Data bits 8
Stop bits: 1
Flow Control None
Terminal VT100

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-3

The following window will open when a connection has been established.

To log in, type the Login name and password as requested. The default values are both root:

Login: root
Password: root

Telnet Console
If you know at least one of the two IP addresses and netmasks, then you can use Telnet to connect
to the W311/321/341’s console utility. The default IP address and Netmask for each of the two
ports are given below:

 Default IP Address Netmask
LAN 1 192.168.3.127 255.255.255.0
WIRLESS LAN 192.168.4.127 255.255.255.0

Use a cross-over Ethernet cable to connect directly from your PC to the W311/321/341. You
should first modify your PC’s IP address and netmask so that your PC is on the same subnet as one
of W311/321/341’s two LAN ports. For example, if you connect to LAN 1, you can set your PC’s
IP address to 192.168.3.126 and netmask to 255.255.255.0. If you connect to the WIRLESS LAN,
you can set your PC’s IP address to 192.168.4.126 and netmask to 255.255.255.0 using a wirless
AP router.

Use a straight-through Ethernet cable to connect to a hub or switch that is connected to your local
LAN. The default IP addresses and netmasks are shown above. To log in, type the Login name and
password as requested. The default values are both root:

Login: root
Password: root

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-4

You can proceed with configuring the network settings of the target computer when you reach the
bash command shell. Configuration instructions are given in the next section.

ATTENTION

Serial Console Reminder
Remember to choose VT100 as the terminal type. Use the cable CBL-4PINDB9F-100, which
comes with the W311/321/341, to connect to the serial console port.
Telnet Reminder
When connecting to the W311/321/341 over a LAN, you must configure your PC’s Ethernet IP
address to be on the same subnet as the W341 that you wish to contact. If you do not get
connected on the first try, re-check the serial and IP settings, and then unplug and re-plug the
power cord.

SSH Console
The W311/321/341 support an SSH Console to provide users with better security options.

Windows Users
Click on the link http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html to download
PuTTY (free software) to set up an SSH console for the W311/321/341 in a Windows environment.
The following figure shows a simple example of the configuration that is required.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-5

Linux Users
From a Linux machine, use the “ssh” command to access the W311/321/341’s console utility via
SSH.
#ssh 192.168.3.127

Select yes to complete the connection.
 [root@bee_notebook root]# ssh 192.168.3.127
The authenticity of host ‘192.168.3.127 (192.168.3.127)’ can’t be established.
RSA key fingerprint is 8b:ee:ff:84:41:25:fc:cd:2a:f2:92:8f:cb:1f:6b:2f.
Are you sure you want to continue connection (yes/no)? yes_

NOTE SSH provides better security compared to Telnet for accessing the W311/321/341’s console
utility over the network.

Configuring the Ethernet Interface
The network settings of the W311/321/341 can be modified with the serial console port, or online
over the network.

Modifying Network Settings with the Serial Console
In this section, we use the serial console to configure the network settings of the target computer.

1. Follow the instructions given in a previous section to access the Console Utility of the target
computer via the serial console port, and then type #cd /etc/network to change directories.

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-6

2. Type #vi interfaces to edit the network configuration file with vi editor. You can
configure the Ethernet ports of the W341 for static or dynamic (DHCP) IP addresses.

Static IP addresses

As shown in the table below, 4 network addresses must be modified: address, network,
netmask, and broadcast. The default IP address for LAN1 is 192.168.3.127, with default
netmask of 255.255.255.0.

Dynamic IP addresses

By default, the W311/321/341 are configured for “static” IP addresses. To configure one or
both LAN ports to request an IP address dynamically, replace static with dhcp and then delete
the address, network, netmask, and broadcast lines.

Default Setting for LAN1 Dynamic Setting using DHCP
iface eth0 inet static
 address 192.168.3.127
 network: 192.168.3.0
 netmask 255.255.255.0
 broadcast 192.168.3.255

iface eth0 inet dhcp

3. After the boot settings of the LAN interface have been modified, issue the following
command to activate the LAN settings immediately:

#/etc/init.d/networking restart

NOTE After changing the IP settings, use the networking restart command to activate the new IP
address.

Modifying Network Settings over the Network
IP settings can be activated over the network, but the new settings will not be saved to the flash
ROM without modifying the file /etc/network/interfaces.

For example, type the command #ifconfig eth0 192.168.1.1 to change the IP address of
LAN1 to 192.168.1.1.

Configuring the WLAN

IEEE802.11a/b/g
Use one of the following options to configure the WLAN for IEEE802.11a/b/g:

1. Using the config file to set up your wireless system

The config file is /etc/wireless.conf. The config file is read by the OS when the
W311/321/341 unit boots up. You may also use the load_wlan command to force your
wireless to run the config file and set up your wireless LAN card after the W311/321/341 unit
is already up and running. The /etc/wireless.conf file format is shown below:

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-7

/etc/wireless.conf Format:

DEVICE=eth1
MODE=managed
ESSID=any
KEY=any

/etc/wireless.conf Item list:

DEVICE indicates your wireless interface
MODE indicates your wireless mode, such as ad-hoc, managed, master
ESSID indicates your wireless ESSID NAME
KEY indicates your wireless WEP key
CHANNEL indicates your wireless channel setting
MACMODE indicates your wireless macmode setting, such as 1 (mixed mode), 2
(pure_g_mode), 3 (pure_b_mode), 4 (pure_a_mode)
REGION indicates your wireless country region setting
WIRELESS_SUPPLICANT If set to Y, load_wlan will call /etc/init.d/wpa.sh and open
wireless WPA and WPA2
MOXA_REPEAT If set to Y, load_wlan will call ipriv eth1 set_moxa_repeat to establish
ad-hoc mode using repeat function

If you want to use WPA and WPA2, please refer to the subsection “Using
WPA_SUPPLICANT to Support WPA and WPA2” on page 2-11.

2. Use the command #vi /etc/networking/interfaces to open the “interfaces”configuration
file with vi editor, and then edit the 802.11g network settings

Static IP addresses:

As shown in the table below, 4 network addresses need to be modified: address, network,
netmask, and broadcast. The default WIRLESS LAN IP address is 192.168.4.127.

Dynamic IP addresses:

By default, the W311/321/341 are configured for “static” IP addresses. To configure one or
both LAN ports to request an IP address dynamically, replace static with dhcp and then delete
the address, network, netmask, and broadcast lines.

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-8

Default Setting for WIRLESS LAN Dynamic Setting using DHCP
iface eth1 inet static
 address 192.168.4.127
 network: 192.168.4.0
 netmask 255.255.255.0
 broadcast 192.168.4.255

iface eth1 inet dhcp

After the boot settings of the LAN interface have been modified, issue the following
command to activate the LAN settings immediately:

#/etc/init.d/networking restart

3. Using iwconfig / iwpriv Utility to set up the wireless configuration

Using iwpriv eth1 essid ESSIDNAME

iwconfig eth1 essid ESSIDNAME set up wireless essid
iwconfig eth1 key KEYVALUE open set up wireless wep key
iwconfig eth1 mode infra set up wireless mode

CountryRegion—Sets the channels for your particular country / region

Using iwpriv eth1 set_Region REGION

REGION Explanation
1 (USA) (default) Use 802.11g channels 1 to 11
2 (Taiwan/Europe) Use 802.11g channels 1 to 13
3 (France) Use 802.11g channels 10 to 13
4 (Japan) Use 802.11g channels 1 to 14
5 (Israel) Use 802.11g channels 3 to 9
6 (Mexico) Use 802.11g channels 10 , 11

WirelessMode—Sets the wireless mode
Using iwpriv eth1 set_mac_mode Setting
Note: infrastruct just support mixed/a mode; Ad-hoc support b/g/a mode

Setting Explanation
1 (default) 11a/mixed(b.g)
2 11g only
3 11b only
4 11a only

SSID—Sets the softAP SSID
Using iwconfig eth1 essid Setting

Setting
Any 32-byte string

NetworkType—Sets the wireless operation mode
Using iwconfig eth1 mode Setting

Setting Explanation
managed Infrastructure mode (uses access points to transmit data)
ad-hoc Adhoc mode (transmits data from host to host)

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-9

Channel—Sets the channel
Using iwconfig eth1 channel Setting
Note: Infrastruct couldn’t set channel

Freq—Sets the channel frequence
Using iwconfig eth1 freq Setting(G,M,K)
Note: Infrastruct couldn’t set freq

802.11b,g Channel and Frequency Table
Channel Freqence
1 2412(K)
2 2417(K)
3 2422(K)
4 2427(K)
5 2432(K)
6 2437(K)
7 2442(K)
8 2447(K)
9 2452(K)
10 2457(K)
11 2462(K)
12 2467(K)
13 2472(K)
14 2484(K)

802.11a Channel and Frequency Table
Channel Freqence
36 5180 (K)
40 5200 (K)
44 5220 (K)
48 5240 (K)
52 5260 (K)
56 5280 (K)
60 5300 (K)
64 5320 (K)
100 5500 (K)
104 5520 (K)
108 5540 (K)
112 5560 (K)
116 5580 (K)
120 5600 (K)
124 5620(K)
128 5640 (K)
132 5660 (K)
136 5680 (K)

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-10

140 5700 (K)
184 4920 (K)
188 4940 (K)
192 4960(K)
196 4980 (K)
8 5040 (K)
12 5060 (K)
16 5080 (K)
34 5170 (K)
38 5190 (K)
42 5210 (K)
46 5230 (K)
149 5745 (K)
153 5765 (K)
157 5785 (K)
161 5805 (K)
165 5825 (K)

AuthMode—Sets the authentication mode
Using iwpriv eth1 set_auth Setting

Setting Explanation
0 OPEN
1 SHARED
2 AUTO(default)

KeyStr—Sets Key Support string key and hex key
EncrypType—Just Support NONE , WEP64 and WEP128 depend on your key length
Using iwpriv eth1 key s:KEYVALUE (open) support string key
Using iwpriv eth1 key KEYVALUE (open) support hex key

RTSThreshold—Sets the RTS threshold
Using iwpriv eth1 rts Setting

Setting
1 to 2347

FragThreshold—Sets the fragment threshold
Using iwpriv eth1 frag Setting

Setting
256 to 2346

Moxa Repeat—Sets the Repeat function through adhoc method
Using iwpriv eth1 set_moxa_repeat

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-11

Using WPA_SUPPLICANT to Support WPA and WPA2
This embedded computer supports the WPA and WPA2 functions using the /bin/wpa_supplicant
program. We wrote a shell script to help you use this function:

Step 1:
Edit the ssid and psk variables in the file etc/wpa_supplicant.conf.

network={
 ssid=”12345678901”
 key_mgmt=WPA-PSK
 proto=WPA RSN
 pairwise=TKIP CCMP
 group=TKIP CCMP
 psk=”0987654321234”
}

Step 2:
Type /etc/init.d/wpa.sh eth1 start to enable this function. To stop the function, type
/etc/init.d/wpa.sh eth1 stop

SD Slot and USB for Storage Expansion
The W341 and W321 provide an SD slot for storage expansion. MOXA provides an SD flash disk
for plug & play expansion that allows users to plug in a Secure Digital (SD) memory card
compliant with the SD standard V1.0 for up to 1 GB of additional memory space. The following
steps show you how to install SD card into the W341 and W321.

W321

The SD slot is located on the right side of the W321 enclosure. To install an SD card, you must
first remove the SD slot’s protective cover to access the slot, and then plug the SD card directly
into the slot.

The SD card will be mounted at /mnt/sd. Detailed installation instructions are shown below:

Step 1: Use a screwdriver to remove the screws holding the SD slot’s outer cover.

Step 2: After removing the cover, insert the SD memory card as shown.

ThinkCore W311/321/341 Linux User’s Manual Getting Started

2-12

W341

The SD slot is located on the front panel of the W341. To install an SD card, you must first
remove the SD slot’s protective cover to access the slot, and then plug the SD card directly into the
slot.

The SD card will be mounted at /mnt/sd. Detailed installation instructions are shown below:

Step 1: Use a screwdriver to remove the screws holding the SD slot’s outer cover, and then
remove the cover.

Step 2: Insert the SD memory card as shown.

NOTE: To remove the SD card from the slot, press the SD card in slightly with your finger, and
then remove your finger to cause the card to spring out partially. You may now grasp the top of the
card with two fingers and pull it out.

Before removing the SD card, remember to type /sync to ensure that your data has been written.

In addition to the SD socket, two USB 2.0 ports are located on the W341’s upper panel. The USB
host is also designed for storage expansion. To use a USB flash disk to expand the storage space,
plug the USB flash disk into the USB port. The flash disk will be detected automatically, and its
file partition will be mounted into the OS. The USB storage will be mounted in one of four
directories: /mnt/usbstorage1, /mnt/usbstorage2, /mnt/usbstorage3, or /mnt/usbstorage4.

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-13

Test Program—Developing Hello.c
In this section, we use the standard “Hello” programming example to illustrate how to develop a
program for the W311/321/341. In general, program development involves the following seven
steps.

Step 1:
Connect the W311/321/341 to a Linux PC.

Step 2:
Install Tool Chain (GNU Cross Compiler & glibc).

Step 3:
Set the cross compiler and glibc environment variables.

Step 4:
Code and compile the program.

Step 5:
Download the program to the W311/321/341 using FTP
or NFS.

Step 6:
Debug the program

 If bugs are found, return to Step 4.
 If no bugs are found, continue with Step 7.

Step 7:
Back up the user directory (distribute the program to
additional W311/321/341 units if needed).

x86

Cross
Compiler

Installing the Tool Chain (Linux)
The Linux Operating System must be pre-installed in the PC before installing the W311/321/341
GNU Tool Chain. Fedora core or compatible versions are recommended. The Tool Chain requires
approximately 100 MB of hard disk space on your PC. The W311/321/341 Tool Chain software is
located on the W311/321/341 CD. To install the Tool Chain, insert the CD into your PC and then
issue the following commands:
#mount /dev/cdrom /mnt/cdrom
#sh /mnt/cdrom/tool-chain/linux/install.sh

The Tool Chain will be installed automatically on your Linux PC within a few minutes. Before
compiling the program, be sure to set the following path first, since the Tool Chain files, including
the compiler, link, library, and include files are located in this directory.
PATH=/usr/local/arm-linux/bin:$PATH

Setting the path allows you to run the compiler from any directory.

NOTE Refer to Appendix B for an introduction to the Windows Tool Chain. In this chapter, we use the
Linux tool chain to illustrate the cross compiling process.

Checking the Flash Memory Space
If the flash memory is full, you will not be able to save data to the Flash ROM. Use the following
command to calculate the amount of “Available” flash memory:
/>df –h

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-14

If there isn’t enough “Available” space for your application, you will need to delete some existing
files. To do this, connect your PC to the W311/321/341 with the console cable, and then use the
console utility to delete the files from the W311/321/341’s flash memory. To check the amount of
free space available, look at the directories in the read/write directory /dev/mtdblock3. Note that
the directories /home and /etc are both mounted on the directory /dev/mtdblock3.

NOTE If the flash memory is full, you will need to free up some memory space before saving files to
the Flash ROM.

Compiling Hello.c
The package CD contains several example programs. Here we use Hello.c as an example to show
you how to compile and run your applications. Type the following commands from your PC to
copy the files used for this example from the CD to your computer’s hard drive:
cd /tmp/
mkdir example
cp –r /mnt/cdrom/example/* /tmp/example

To compile the program, go to the Hello subdirectory and issue the following commands:
#cd example/hello
#make

You should receive the following response:
 [root@localhost hello]# make
 /usr/local/arm-linux/bin/arm-linux-gcc –o hello-release hello.c
 /usr/local/arm-linux/bin/arm-linux-strip –s hello-release
 /usr/local/arm-linux/bin/arm-linux-gcc –ggdb -o hello-debug hello.c
 [root@localhost hello]# _

Next, execute make to generate hello-release and hello-debug, which are described below:

hello-release—an ARM platform execution file (created specifically to run on the W311/321/341)

hello-debug—an ARM platform GDB debug server execution file (see Chapter 5 for details about
the GDB debug tool).

detratS gnitteG launaM s’resU xuniL 143/123/113W eroCknihT

2-15

NOTE Since Moxa’s tool chain places a specially designed Makefile in the directory
/tmp/example/hello, be sure to type the #make command from within that directory. This
special Makefile uses the mxscale-gcc compiler to compile the hello.c source code for the Xscale
environment. If you type the #make command from within any other directory, Linux will use
the x86 compiler (for example, cc or gcc).

Refer to Chapter 5 to see a Makefile example.

Uploading and Running the “Hello” Program
Use the following commands to upload hello-release to the W311/321/341 by FTP.

1. From the PC, type:

#ftp 192.168.3.127

2. Use the bin command to set the transfer mode to Binary mode, and then use the put command
to initiate the file transfer:
ftp> bin

ftp> put hello-release

3. From the W311/321/341, type:

chmod +x hello-release
./hello-release

The word Hello will be printed on the screen.
root@Moxa:~# ./hello-release
Hello

Developing Your First Application
We use the tcps2 example to illustrate how to build an application. The procedure outlined in the
following subsections will show you how to build a TCP server program plus serial port
communication that runs on the W311/321/341.

ftp> cd /home

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-16

Testing Environment
The tcps2 example demonstrates a simple application program that delivers transparent,
bi-directional data transmission between the W311/321/341’s serial and Ethernet ports. As
illustrated in the following figure, the purpose of this application is to transfer data between PC 1
and the W311/321/341 through an RS-232 connection. At the remote site, data can be transferred
between the W311/321/341’s Ethernet port and PC 2 over an Ethernet connection.

Write data to PC1 Receive LAN data

Read serial data Send data to PC2

tcps2.c

Serial Rx
Buffer

LAN Rx
Buffer

RS-232 LAN

PC 2PC 1

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-17

Compiling tcps2.c
The source code for the tcps2 example is located on the CD-ROM at
CD-ROM://example/TCPServer2/tcps2.c. Use the following commands to copy the file to a
specific directory on your PC. We use the direrctory /home/w341/1st_application/. Note that you
need to copy 3 files—Makefile, tcps2.c, tcpsp.c—from the CD-ROM to the target directory.
#mount –t iso9660 /dev/cdrom /mnt/cdrom
#cp /mnt/cdrom/example/TCPServer2/tcps2.c/home/w341/1st_application/tcps2.c
#cp /mnt/cdrom/example/TCPServer2/tcpsp.c/home/w341/1st_application/tcpsp.c
#cp /mnt/cdrom/example/TCPServer2/Makefile.c/home/w341/1st_application/Makefile

Type #make to compile the example code:

You will get the following response, indicating that the example program was compiled
successfully.

 root@server11:/home/w341/1st_application

[root@server11 1st_application]# pwd
/home/w341/1st_application
[root@server11 1st_application]# 11
total 20
-rw-r—r-- 1 root root 514 Nov 27 11:52 Makefile
-rw-r—r-- 1 root root 4554 Nov 27 11:52 tcps2.c
-rw-r—r-- 1 root root 6164 Nov 27 11:55 tcps2.c
[root@server11 1st_application]# make_
/usr/local/arm-linux/bin/arm-linux-gcc -o tcps2-release tcps2.c
/usr/local/arm-linux/bin/arm-linux-strip –s tcps2-release
/usr/local/arm-linux/bin/arm-linux-gcc -o tcpsp-release tcpsp.c
/usr/local/arm-linux/bin/arm-linux-strip –s tcpsp-release
/usr/local/arm-linux/bin/arm-linux-gcc –ggdb -o tcps2-debug tcps2.c
/usr/local/arm-linux/bin/arm-linux-gcc –ggdb -o tcpsp-debug tcpsp.c
[root@server11 1st_application]# 11
total 92
-rw-r—-r-- 1 root root 514 Nov 27 11:52 Makefile
-rwxr-xr—x 1 root root 25843 Nov 27 12:03 tcps2-debug
-rwxr—xr-x 1 root root 4996 Nov 27 12:03 tcps2-release
-rw-r—-r-- 1 root root 4554 Nov 27 11:52 tcps2.c
-rwxr—xr-x 1 root root 26823 Nov 27 12:03 tcpsp-debug
-rwxr—xr-x 1 root root 5396 Nov 27 12:03 tcpsp-release
-rw-r—-r-- 1 root root 6164 Nov 27 11:55 tcpsp.c
[root@server11 1st_application]#

Two executable files, tcps2-release and tcps2-debug, are created.

tcps2-release—an ARM platform execution file (created specifically to run on the
W311/321/341).

tcps2-debug—an ARM platform GDB debug server execution file (see Chapter 5 for details about
the GDB debug tool).

NOTE If you get an error message at this point, it could be because you neglected to put tcps2.c and
tcpsp.c in the same directory. The example Makefile we provide is set up to compile both tcps2
and tcpsp into the same project Makefile. Alternatively, you could modify the Makefile to suit
your particular requirements.

detratS gnitteG launaM s’resU xuniL 143/123/113W eroCknihT

2-18

Uploading and Running the “tcps2-release” Program
Use the following commands to upload tcps2-release to the W311/321/341 through an FTP
connection.

1. From the PC, type:

#ftp 192.168.3.127

2. Next, use the bin command to set the transfer mode to Binary, and the put command to
initiate the file transfer:
ftp> bin
ftp> cd /home
ftp> put tcps2-release

root@server11:/home/w341/1st_application

[root@server11 1st_application]# ftp 192.168.3.127
Connected to 192.168.3.127
220 Moxa FTP server (Version wu-2.6.1(2) Mon Nov 24 12:17:04 CST 2003) ready.
530 Please login with USER and PASS.
530 Please login with USER and PASS.
KERBEROS_V4 rejected as an authentication type
Name (192.168.3.127:root): root
331 Password required for root.
Password:
230 User root logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> bin
200 Type set to I.
ftp> put tcps2-release
local: tcps2-release remote: tcps2-release
277 Entering Passive Mode (192.168.3.127.82.253)
150 Opening BINARY mode data connection for tcps2-release.
226 Transfer complete
4996 bytes sent in 0.00013 seconds (3.9e+04 Kbytes/s)
ftp> ls
227 Entering Passive Mode (192.168.3.127.106.196)
150 Opening ASCII mode data connection for /bin/ls.
-rw------- 1 root root 899 Jun 10 08:11 bash_history
-rw-r--r-- 1 root root 4996 Jun 12 02:15 tcps2-release
226 Transfer complete
ftp>

3. From the W311/321/341, type:

chmod +x tcps2-release
./tcps2-release &

192.168.3.127 – PuTTY

root@Moxa:~# ls –al
drwxr—xr-x 2 root root 0 Jun 12 02:14
drwxr—xr-x 15 root root 0 Jan 1 1970
-rw------- 1 root root 899 Jun 10 08:11 .bash_history
-rw-r--r-- 1 root root 4996 Jun 12 02:15 tcps2-release
root@Moxa:~# chmod +x tcps2-release
root@Moxa:~# ls -al
drwxr—xr-x 2 root root 0 Jun 12 02:14
drwxr—xr-x 15 root root 0 Jan 1 1970
-rw------- 1 root root 899 Jun 10 08:11 .bash_history
-rwxr-xr-x 1 root root 4996 Jun 12 02:15 tcps2-release
root@Moxa:~#

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-19

4. The program should start running in the background. Use the #ps –ef command to check if
the tcps2 program is actually running in the background.
#ps // use this command to check if the program is running

 192.168.3.127 – PuTTY

root@Moxa:~# ls –al
drwxr—xr-x 2 root root 0 Jun 12 02:14
drwxr—xr-x 15 root root 0 Jan 1 1970
-rw------- 1 root root 899 Jun 10 08:11 .bash_history
-rw-r--r-- 1 root root 4996 Jun 12 02:15 tcps2-release
root@Moxa:~# chmod +x tcps2-release
root@Moxa:~# ls -al
drwxr—xr-x 2 root root 0 Jun 12 02:14
drwxr—xr-x 15 root root 0 Jan 1 1970
-rw------- 1 root root 899 Jun 10 08:11 .bash_history
-rwxr-xr-x 1 root root 4996 Jun 12 02:15 tcps2-release
root@Moxa:~# ./tcps2-release &
[1] 187
start
root@Moxa:~# ps
[1]+ Running ./tcps2-release &
root@Moxa:~#

NOTE Use the kill command for job number 1 to terminate this program: #kill %1

#ps -ef // use this command to check if the program is running

 192.168.3.127 – PuTTY

[1]+ Running ./tcps2-release &
root@Moxa:~# ps -ef
PID Uid VmSize Stat Command

1 root 532 S init [3]
2 root SWN [ksoftirqd/0]
3 root SW< [events/0]
4 root SW< [khelper]
13 root SW< [kblockd/0]
14 root SW [khubd]
24 root SW [pdflush]
25 root SW [pdflush]
27 root SW< [aio/0]
26 root SW [kswapd0]
604 root SW [mtdblockd]
609 root SW [pccardd]
611 root SW [pccardd]
625 root SWN [jffs2_gcd_mtd3]
673 root 500 S /bin/inetd
679 root 3004 S /usr/bin/httpd -k start -d /etc/apache
682 bin 380 S /bin/portmap
685 root 1176 S /bin/sh --login
690 root 464 S /bin/snmpd
694 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
695 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
696 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
697 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
698 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
701 root 352 S /bin/reportip
714 root 1176 S -bash
726 root 436 S /bin/telnetd
727 root 1164 S -bash

 728 root 1264 S ./tcps2-release
 729 root 1592 S ps -ef
root@Moxa:~#

ThinkCore W311/321/341 Linux User’s Manual Getting Started

 2-20

NOTE Use the kill -9 command for PID 728 to terminate this program: #kill -9 %728

Testing Procedure Summary
1. Compile tcps2.c (#make).
2. Upload and run tcps2-release in the background (#./tcps2-release &).
3. Check that the process is running (#jobs or #ps -ef).
4. Use a serial cable to connect PC1 to the W311/321/341’s serial port 1.
5. Use an Ethernet cable to connect PC2 to the W311/321/341.
6. On PC1: If running Windows, use HyperTerminal (38400, n, 8, 1) to open COMn.
7. On PC2: Type #telnet 192.168.3.127 4001.
8. On PC1: Type some text on the keyboard and then press Enter.
9. On PC2: The text you typed on PC1 will appear on PC2’s screen.

The testing environment is illustrated in the following figure. However, note that there are
limitations to the example program tcps2.c.

tcps2.c

RS-232 LAN

PC 2PC 1

Write data to PC1 Receive LAN data

Read serial data Send data to PC2Serial Rx
Buffer

LAN Rx
Buffer

NOTE The tcps2.c application is a simple example designed to give users a basic understanding of the
concepts involved in combining Ethernet communication and serial port communication.
However, the example program has some limitations that make it unsuitable for real-life
applications.

1. The serial port is in canonical mode and block mode, making it impossible to send data from
the Ethernet side to the serial side (i.e., from PC 2 to PC 1 in the above example).

2. The Ethernet side will not accept multiple connections.

33
Chapter 3 Managing Embedded Linux

This chapter includes information about version control, deployment, updates, and peripherals.
The information in this chapter will be particularly useful when you need to run the same
application on several W311/321/341 units.

The following topics are covered in this chapter:

 System Version Information
 System Image Backup

 Upgrading the Firmware
 Loading Factory Defaults
 Backing Up the User Directory
 Deploying the User Directory to Additional W311/321/341 Units

 Enabling and Disabling Daemons
 Setting the Run-Level
 Adjusting the System Time

 Setting the Time Manually
 NTP Client
 Updating the Time Automatically

 Cron—daemon to Execute Scheduled Commands

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

 3-2

System Version Information
To determine the hardware capability of your W311/321/341, and what kind of software functions
are supported, check the version numbers of your W311/321/341’s hardware, kernel, and user file
system. Contact Moxa to determine the hardware version. You will need the Production S/N
(Serial number), which is located on the W311/321/341’s bottom label.

To check the kernel version, type:
#kversion

 192.168.3.127 – PuTTY

root@Moxa:~# kversion
Version 1.0
root@Moxa:~#

NOTE The kernel version number is for the factory default configuration. You may download the latest
firmware version from Moxa’s website and then upgrade the W311/321/341’s hardware.

System Image Backup

Upgrading the Firmware
The W311/321/341’s bios, kernel, and root file system are combined into one firmware file, which
can be downloaded from Moxa’s website (www.moxa.com). The name of the file has the form
w341-x.x.x.frm , with “x.x.x” indicating the firmware version. To upgrade the firmware,
download the firmware file to a PC, and then transfer the file to the W311/321/341 using a console
port or Telnet console connection.

ATTENTION

Upgrading the firmware will erase all data on the Flash ROM
If you are using the ramdisk to store code for your applications, beware that updating the
firmware will erase all of the data on the Flash ROM. You should back up your application files
and data before updating the firmware.

http://www.moxa.com/

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

 3-3

Since different Flash disks have different sizes, it is a good idea to check the size of your Flash
disk before upgrading the firmware, or before using the disk to store your application and data
files. Use the #df –h command to list the size of each memory block and how much free space is
available in each block.

 192.168.3.127 – PuTTY

root@Moxa:~# df -h
Filesystem Size Used Available Use% Mounted on

/dev/mtdblock2 8.0M 6.0M 2.0M 75% /
/dev/ram0 499.0k 16.0k 458.0k 3% /var
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /tmp
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /home
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /etc
tmpfs 30.4M 0 30.4M 0% /dev/shm
root@Moxa:~# upramdisk
root@Moxa:~# df -h
Filesystem Size Used Available Use% Mounted on

/dev/mtdblock2 8.0M 6.0M 2.0M 75% /
/dev/ram0 499.0k 16.0k 458.0k 3% /var
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /tmp
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /home
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /etc
tmpfs 30.4M 0 30.4M 0% /dev/shm
/dev/ram1 16.0M 1.0k 15.1M 0% /mnt/ramdisk
root@Moxa:~# cd /mnt/ramdisk
root@Moxa:/mnt/ramdisk#

The following instructions give the steps required to save the firmware file to the W311/321/341’s
RAM disk and how to upgrade the firmware.

1. Type the following commands to enable the RAM disk:

#upramdisk
#cd /mnt/ramdisk

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

3-4

2. Type the following commands to use the W311/321/341’s built-in FTP client to transfer the
firmware file (W341-x.x.x.frm) from the PC to the W311/321/341:

/mnt/ramdisk> ftp <destination PC’s IP>
Login Name: xxxx
Login Password: xxxx
ftp> bin
ftp> get -x.x.x.frm

192.168.3.127 – PuTTY

root@Moxa:/mnt/ramdisk# ftp 192.168.3.193
Connected to 192.168.3.193 (192.168.3.193).
220 TYPSoft FTP Server 1.10 ready…
Name (192.168.3.193:root): root
331 Password required for root.
Password:
230 User root logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd newsw
250 CWD command successful. “/C:/ftproot/newsw/” is current directory.
ftp> bin
200 Type set to I.
ftp> ls
200 Port command successful.
150 Opening data connection for directory list.
drw-rw-rw- 1 ftp ftp 0 Nov 30 10:03 .
drw-rw-rw- 1 ftp ftp 0 Nov 30 10:03 .
-rw-rw-rw- 1 ftp ftp 13167772 Nov 29 10:24 w3xx-1.0.frm
226 Transfer complete.
ftp> get w3xx-1.0.frm
local: ia240-1.0.frm remote: w3xx-1.0.frm
200 Port command successful.
150 Opening data connection for w3xx-1.0.frm
226 Transfer complete.
13167772 bytes received in 2.17 secs (5925.8 kB/s)
ftp>

3. Next, use the upfirm command to upgrade the kernel and root file system:

#upfirm w3xx-x.x.x.frm

192.168.3.127 – PuTTY

root@Moxa:/mnt/ramdisk# upfirm w3xx-1.0.frm
Moxa ThinkCore IA240 upgrade firmware utility version 1.0.
To check source firmware file context.
The source firmware file conext is OK.
This step will destroy all your firmware.
Continue ? (Y/N) : Y
Now upgrade the file [kernel].
Format MTD device [/dev/mtd1] . . .
MTD device [/dev/mtd1] erase 128 Kibyte @ 1C0000 – 100% complete.
Wait to write file . . .
Compleleted 100%
Now upgrade the file [usrdisk].
Format MTD device [/dev/mtd2] . . .
MTD device [/dev/mtd2] erase 128 Kibyte @ 800000 – 100% complete.
Wait to write file . . .
Compleleted 100%
Upgrade the firmware is OK.

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

 3-5

ATTENTION

The upfirm utility will reboot your target after the upgrade is OK.

Loading Factory Defaults
To load the the factory default settings, you must press the reset-to-default button for more than 5
seconds. All files in the /home & /etc directories will be destroyed. Note that while pressing the
reset-to-default button, the Ready LED will blink once every second for the first 5 seconds. The
Ready LED will turn off after 5 seconds, and the factory defaults will be loaded.

Backing Up the User Directory
1. Create a backup file. First type the following command to enable the RAM disk:

#upramdisk

Next, use the file system backup utility provided by Moxa:
#backupuf /mnt/ramdisk/usrfs-backup

2. Once the file system is backed up, use FTP to transfer the file usrfs-backup to your PC.
 192.168.3.127 – PuTTY

root@Moxa:~# upramdisk
root@Moxa:~# cd /mnt/ramdisk
root@Moxa:/mnt/ramdisk# df –h
Filesystem Size Used Available Use% Mounted on
/dev/mtdblock2 8.0M 6.0M 2.0M 75% /
/dev/ram0 499.0k 17.0k 457.0k 4% /var
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /tmp
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /home
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /etc
tmpfs 30.4M 0 30.4M 0% /dev/shm
/dev/ram1 16.0M 1.0k 15.1M 0% /var/ramdisk
root@Moxa:/mnt/ramdisk# backupuf /mnt/ramdisk/usrfs-backup
Sync the file system…
Now backup the user root file system. Please wait. . .
.
Backup user root file system OK.
root@Moxa:/mnt/ramdisk#

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

3-6

Deploying the User Directory to Additional W311/321/341 Units
For some applications, you may need to ghost one W311/321/341 user file system to other
W311/321/341 units. Back up the user file system to a PC (refer to the previous subsection,
Backing Up the User File System, for instructions), and then type the following commands to copy
the backup to additional W311/321/341 units.
#upramdisk
#cd /mnt/ramdisk
#upfirm usrfs-backup

192.168.3.127 – PuTTY

root@Moxa:/mnt/ramdisk# ls -al
drwxr—xr-x 3 root root 1024 Jun 15 02:47
drwxr—xr-x 15 root root 0 Sep 29 2004
-rw------- 1 root root 12288 Jun 15 02:45 lost+found
-rw-r--r-- 1 root root 27263140 Jun 15 02:48 usrfs-backup
root@Moxa:/mnt/ramdisk# upfirm usrfs-backup
Moxa ThinkCore w3xx upgrade firmware utility version 1.0.
To check source firmware file context.
The source firmware file conext is OK.
This step will destroy all your firmware.
Continue ? (Y/N) : Y
Now upgrade the file [userdisk]:
Format MTD device [/dev/mtd3] . . .
MTD device [/dev/mtd3] erase 128 Kibyte @ 600000 – 100% complete.
Wait to write file . . .
Compleleted 100%
Upgrade the firmware is OK.

Enabling and Disabling Daemons
The following daemons are enabled when the W311/321/341 unit boots up for the first time.

snmpdSNMP Agent daemon
telnetdTelnet Server / Client daemon
inetdInternet Daemons
ftpd...............FTP Server / Client daemon
sshdSecure Shell Server daemon
httpdApache WWW Server daemon

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

3-7

Type the command “ps –ef” to list all processes currently running.

192.168.3.127 – PuTTY

root@Moxa:~# cd /etc
root@Moxa:/etc# ps -ef
 PID Uid VmSize Stat Command
 1 root 532 S init [3]
 2 root SWN [ksoftirqd/0]
 3 root SW< [events/0]
 4 root SW< [khelper]
 13 root SW< [kblockd/0]
 14 root SW [khubd]
 24 root SW [pdflush]
 25 root SW [pdflush]
 27 root SW< [aio/0]
 26 root SW [kswapd0]
 604 root SW [mtdblockd]
 609 root SW [pccardd]
 611 root SW [pccardd]
 625 root SWN [jffs2_gcd_mtd3]
 673 root 500 S /bin/inetd
 679 root 3004 S /usr/bin/httpd -k start -d /etc/apache
 682 bin 380 S /bin/portmap
 685 root 1176 S /bin/sh --login
 690 root 464 S /bin/snmpd
 694 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 695 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 696 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 697 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 698 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 701 root 352 S /bin/reportip
 714 root 1176 S -bash
 726 root 436 S /bin/telnetd
 727 root 1180 S -bash
 783 root 628 R ps -ef
root@Moxa:/ect#

To run a private daemon, you can edit the file rc.local, as follows:
#cd /etc/rc.d
#vi rc.local

192.168.3.127 – PuTTY

root@Moxa:~# cd /etc/rc.d
root@Moxa:/etc/rc.d# vi rc.local

Next, use vi to open your application program. We use the example program tcps2-release, and
put it to run in the background.

192.168.3.127 – PuTTY

!/bin/sh
Add you want to run daemon
/home/tcps2-release &~

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

3-8

The enabled daemons will be available after you reboot the system.

192.168.3.127 – PuTTY

root@Moxa:~# ps -ef
 PID Uid VmSize Stat Command
 1 root 532 S init [3]
 2 root SWN [ksoftirqd/0]
 3 root SW< [events/0]
 4 root SW< [khelper]
 13 root SW< [kblockd/0]
 14 root SW [khubd]
 24 root SW [pdflush]
 25 root SW [pdflush]
 27 root SW< [aio/0]
 26 root SW [kswapd0]
 604 root SW [mtdblockd]
 609 root SW [pccardd]
 611 root SW [pccardd]
 625 root SWN [jffs2_gcd_mtd3]
 673 root 500 S /bin/inetd
 674 root 1264 S /root/tcps2-release
 679 root 3004 S /usr/bin/httpd -k start -d /etc/apache
 682 bin 380 S /bin/portmap
 685 root 1176 S /bin/sh --login
 690 root 464 S /bin/snmpd
 694 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 695 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 696 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 697 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 698 nobody 3012 S /usr/bin/httpd -k start -d /etc/apache
 701 root 352 S /bin/reportip
 714 root 1176 S -bash
 726 root 436 S /bin/telnetd
 727 root 1180 S -bash
 783 root 628 R ps -ef
root@Moxa:~#

Setting the Run-Level
In this section, we outline the steps you should take to set the Linux run-level and execute requests.
Use the following command to enable or disable settings:

192.168.3.127 – PuTTY

root@Moxa:/ect/rc.d/rc3.d# ls
S19nfs-common S25nfs-user-server S99showreadyled
S20snmpd S55ssh
S24pcmcia S99rmnologin
root@Moxa:/etc/rc.d/rc3.d#

#cd /etc/rc.d/init.d

Edit a shell script to execute /home/tcps2-release and save to tcps2 as an example.
#cd /etc/rc.d/rc3.d
#ln –s /etc/rc.d/init.d/tcps2 S60tcps2

SxxRUNFILE stands for
S: start the run file while linux boots up.
xx: a number between 00-99. Smaller numbers have a higher priority.
RUNFILE: the file name.

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

3-9

192.168.3.127 – PuTTY

root@Moxa:/ect/rc.d/rc3.d# ls
S19nfs-common S25nfs-user-server S99showreadyled
S20snmpd S55ssh
S24pcmcia S99rmnologin
root@Moxa:/ect/rc.d/rc3.d# ln –s /home/tcps2-release S60tcps2
root@Moxa:/ect/rc.d/rc3.d# ls
S19nfs-common S25nfs-user-server S99rmnologin
S20snmpd S55ssh S99showreadyled
S24pcmcia S60tcps2
root@Moxa:/etc/rc.d/rc3.d#

KxxRUNFILE stands for
K: start the run file while linux shuts down or halts.
xx: a number between 00-99. Smaller numbers have a higher priority.
RUNFILE: the file name.

To remove the daemon, remove the run file from the /etc/rc.d/rc3.d directory by using the
following command:
#rm –f /etc/rc.d/rc3.d/S60tcps2

Adjusting the System Time

Setting the Time Manually
The W311/321/341 have two time settings. One is the system time, and the other is the RTC (Real
Time Clock) time kept by the W311/321/341’s hardware. Use the #date command to query the
current system time or set a new system time. Use #hwclock to query the current RTC time or set a
new RTC time.

Use the following command to query the system time:
#date

Use the following command to query the RTC time:
#hwclock

Use the following command to set the system time:
#date MMDDhhmmYYYY

MM = Month
DD = Date
hhmm = hour and minute
YYYY = Year

Use the following command to set the RTC time:
#hwclock –w

Write current system time to RTC

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

3-10

The following figure illustrates how to update thesystem time and set the RTC time.

192.168.3.127 – PuTTY

root@Moxa:~# date
Fri Jun 23 23:30:31 CST 2000
root@Moxa:~# hwclock
Fri Jun 23 23:30:35 2000 -0.557748 seconds
root@Moxa:~# date 120910002004
Thu Dec 9 10:00:00 CST 2004
root@Moxa:~# hwclock –w
root@Moxa:~# date ; hwclock
Thu Dec 9 10:01:07 CST 2004
Thu Dec 9 10:01:08 2004 -0.933547 seconds
root@Moxa:~#

NTP Client
The W311/321/341 have a built-in NTP (Network Time Protocol) client that is used to initialize a
time request to a remote NTP server. Use #ntpdate <this client utility> to update the system time.
#ntpdate time.stdtime.gov.tw
#hwclock –w

Visit http://www.ntp.org for more information about NTP and NTP server addresses.

10.120.53.100 – PuTTY

root@Moxa:~# date ; hwclock
Sat Jan 1 00:00:36 CST 2000
Sat Jan 1 00:00:37 2000 -0.772941 seconds
root@Moxa:~# ntpdate time.stdtion.gov.tw
 9 Dec 10:58:53 ntpdate[207]: step time server 220.130.158.52 offset 155905087.9
84256 sec
root@Moxa:~# hwclock -w
root@Moxa:~# date ; hwclock
Thu Dec 9 10:59:11 CST 2004
Thu Dec 9 10:59:12 2004 -0.844076 seconds
root@Moxa:~#

NOTE Before using the NTP client utility, check your IP and DNS settings to make sure that an Internet
connection is available. Refer to Chapter 2 for instructions on how to configure the Ethernet
interface, and see Chapter 4 for DNS setting information.

Updating the Time Automatically
In this subsection, we show how to use a shell script to update the time automatically.

Example shell script to update the system time periodically
#!/bin/sh
ntpdate time.nist.gov # You can use the time server’s ip address or domain
 # name directly. If you use domain name, you must
 # enable the domain client on the system by updating
 # /etc/resolv.conf file.
hwclock –-systohc
sleep 100 # Updates every 100 seconds. The min. time is 100 seconds. Change
 # 100 to a larger number to update RTC less often.

Save the shell script using any file name. E.g., fixtime

http://www.ntp.org/

ThinkCore W311/321/341 Linux User’s Manual Managing Embedded Linux

3-11

How to run the shell script automatically when the kernel boots up

Copy the example shell script fixtime to directory /etc/init.d, and then use
chmod 755 fixtime to change the shell script mode. Next, use vi editor to edit the file /etc/inittab.
Add the following line to the bottom of the file:
ntp : 2345 : respawn : /etc/init.d/fixtime

Use the command #init q to re-init the kernel.

Cron—Daemon to Execute Scheduled Commands
Start Cron from the directory /etc/rc.d/rc.local. It will return immediately, so you don’t need to
start it with ‘&’ to run in the background.

The Cron daemon will search /etc/cron.d/crontab for crontab files, which are named after
accounts in /etc/passwd.

Cron wakes up every minute, and checks each command to see if it should be run in that minute.
When executing commands, output is mailed to the owner of the crontab (or to the user named in
the MAILTO environment variable in the crontab, if such a user exists).

Modify the file /etc/cron.d/crontab to set up your scheduled applications. Crontab files have the
following format:

mm h dom mon dow user command
min hour date month week user command
0-59 0-23 1-31 1-12 0-6 (0 is Sunday)

The following example demonstrates how to use Cron.

How to use cron to update the system time and RTC time every day at 8:00.

STEP1: Write a shell script named fixtime.sh and save it to /home/.
#!/bin/sh
ntpdate time.nist.gov
hwclock –-systohc
exit 0

STEP2: Change mode of fixtime.sh
#chmod 755 fixtime.sh

STEP3: Modify /etc/cron.d/crontab file to run fixtime.sh at 8:00 every day.

Add the following line to the end of crontab:
* 8 * * * root/home/fixtime.sh

STEP4: Enable the cron daemon manually.
#/etc/init.d/cron start

STEP5: Enable cron when the system boots up.

Add the following line in the file /etc/init.d/rc.local
#/etc/init.d/cron start

44
Chapter 4 Managing Communications

In this chapter, we explain how to configure the W311/321/341’s various communication
functions.

The following topics are covered in this chapter:

 Telnet / FTP
 DNS
 Web Service—Apache
 Installing PHP for Apache Web Service
 IPTABLES
 NAT

 NAT Example
 Enabling NAT at Bootup

 Dial-up Service—PPP
 PPPoE
 NFS (Network File System)

 Setting up the W311/321/341 as an NFS Client
 Mail
 SNMP
 OpenVPN

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-2

Telnet / FTP
In addition to supporting Telnet client/server and FTP client/server, the W311/321/341 also
support SSH and sftp client/server. To enable or disable the Telnet/ftp server, you first need to edit
the file /etc/inetd.conf.

Enabling the Telnet/ftp server

The following example shows the default content of the file /etc/inetd.conf. The default is to
enable the Telnet/ftp server:
discard dgram udp wait root /bin/discard
discard stream tcp nowait root /bin/discard
telnet stream tcp nowait root /bin/telnetd
ftp stream tcp nowait root /bin/ftpd -l

Disabling the Telnet/ftp server

Disable the daemon by typing ‘#’ in front of the first character of the row to comment out the line.

DNS
The W311/321/341 support DNS client (but not DNS server). To set up DNS client, you need to
edit three configuration files: /etc/hosts, /etc/resolv.conf, and /etc/nsswitch.conf.
/etc/hosts
This is the first file that the Linux system reads to resolve the host name and IP address.
/etc/resolv.conf
This is the most important file that you need to edit when using DNS for the other programs. For
example, before you use #ntpdate time.nist.goc to update the system time, you will need to add the
DNS server address to the file. Ask your network administrator which DNS server address you
should use. The DNS server’s IP address is specified with the “nameserver” command. For
example, add the following line to /etc/resolv.conf if the DNS server’s IP address is 168.95.1.1:
nameserver 168.95.1.1

 10.120.53.100 – PuTTY

root@Moxa:/etc# cat resolv.conf

resolv.conf This file is the resolver configuration file
See resolver(5).

#nameserver 192.168.1.16
nameserver 168.95.1.1
nameserver 140.115.1.31
nameserver 140.115.236.10
root@Moxa:/etc#

/etc/nsswitch.conf
This file defines the sequence to resolve the IP address by using /etc/hosts file or /etc/resolv.conf.

Web Service—Apache
The Apache web server’s main configuration file is /etc/apache/conf/httpd.conf, with the
default homepage located at /home/httpd/htdocs/index.html. Save your own homepage to the
following directory:

/home/httpd/htdocs/

Save your CGI page to the following directory:

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-3

/home/httpd/cgi-bin/

Before you modify the homepage, use a browser (such as Microsoft Internet Explorer or Mozilla
Firefox) from your PC to test if the Apache Web Server is working. Type the LAN1 IP address in
the browser’s address box to open the homepage. E.g., if the default IP address is still active, type
http://192.168.3.127 in the address box.

To open the default CGI page, type http://192.168.3.127/cgi-bin/test-cgi in your browser’s
address box.

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-4

To open the default CGI test script report page, type http://192.168.3.127/cgi-bin/test-cgi in your
browser’s address box.

NOTE The CGI function is enabled by default. If you want to disable the function, modify the file
/etc/apache/conf/httpd.conf. When you develop your own CGI application, make sure your CGI
file is executable.

 192.168.3.127 – PuTTY

root@Moxa:/home/httpd/cgi-bin# ls –al
drwxr—xr-x 2 root root 0 Aug 24 1999
drwxr—xr-x 5 root root 0 Nov 5 16:16
-rwxr—xr-x 1 root root 757 Aug 24 1999 test-cgi
root@Moxa:/home/httpd/cgi-bin#

Installing PHP for Apache Web Server
This embedded computer supports the PHP option. However, since the PHP file is 3 MB, it is not
installed by default. To install it yourself, first make sure there is enough free space (at least 3 MB)
on your embedded flash ROM).

Step 1: Check that you have enough free space

 192.168.3.127 – PuTTY

root@Moxa:/bin# df -h
Filesystem Size Used Available Use% Mounted on
/dev/mtdblock2 8.0M 6.0M 2.0M 75% /
/dev/ram0 499.0k 17.0k 457.0k 4% /var
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /tmp
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /home
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /etc
tmpfs 30.4M 0 30.4M 0% /dev/shm
root@Moxa:/bin#

To check that the /dev/mtdblock3 free space is greater than 3 MB.

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

4-5

Step 2: Type ‘upramdisk’ to get the free space ram disk to save the package.

192.168.3.127 – PuTTY

root@Moxa:/bin# upramdisk
root@Moxa:/bin# df -h
Filesystem Size Used Available Use% Mounted on
/dev/mtdblock2 8.0M 6.0M 2.0M 75% /
/dev/ram0 499.0k 18.0k 456.0k 4% /var
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /tmp
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /home
/dev/mtdblock3 6.0M 488.0k 5.5M 8% /etc
tmpfs 30.4M 0 30.4M 0% /dev/shm
/dev/ram1 16.0M 1.0k 15.1M 0% /var/ramdisk
root@Moxa:/bin#

Step 3: Download the PHP package from the CD-ROM. You can find the package in
CD-ROM/target/php/php.tar.gz

192.168.3.127 – PuTTY

root@Moxa:/bin# cd /mnt/ramdisk
root@Moxa:/mnt/ramdisk# ftp 192.168.27.130
Connected to 192.168.27.130.
220 (vsFTPd 2.0.1)
Name (192.168.27.130:root): root
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd /tmp
250 Directory successfully changed.
ftp> bin
200 Switching to Binary mode.
ftp> get php.tar.gz
local: php.tar.gz remote: php.tar.gz
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for php.tar.gz (1789032 bytes).
226 File send OK.
1789032 bytes received in 0.66 secs (2.6e+03 Kbytes/sec)
ftp>

Step 4: uhtar the package. To do this, type the command ‘tar xvzf php.tar.gz’

192.168.3.127 – PuTTY

root@Moxa:/mnt/ramdisk# tar xvzf php.tar.gz
envvars
envvars.old
httpd.conf
httpd.conf.old
install.sh
lib
lib/libmysqlclient.so.15
lib/libpng.so.2
lib/libphp5.so
lib/libmysqlclient.so.15.0.0
lib/libgd.so
lib/libxml2.so.2.6.22
lib/libgd.so.2.0.0
lib/libjpeg.so
lib/libxml2.so.2
lib/libgd.so.2
php
php/php.ini
phpinfo.php
root@Moxa:/mnt/ramdisk#

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-6

Step 5: Run ‘install.sh’ and select to install php

 192.168.3.127 – PuTTY

root@Moxa:/mnt/ramdisk# ./install.sh
Press the number:
1. Install PHP package
2. Uninstall PHP package
3. Exit.
1
Start to install PHP. Please wait ...
Starting web server: apache.
PHP install sucess.
root@Moxa:/mnt/ramdisk#

Step 6: Test it. Use the browser to access http://192.168.3.127/phpinfo.php

If you want to uninstall PHP, follow steps 2 to 5 but select the uninstall option.

http://192.168.3.127/phpinfo.php

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-7

IPTABLES
IPTABLES is an administrative tool for setting up, maintaining, and inspecting the Linux kernel’s
IP packet filter rule tables. Several different tables are defined, with each table containing built-in
chains and user-defined chains.

Each chain is a list of rules that apply to a certain type of packet. Each rule specifies what to do
with a matching packet. A rule (such as a jump to a user-defined chain in the same table) is called
a “target.”

The W311/321/341 support 3 types of IPTABLES table: Filter tables, NAT tables, and Mangle
tables:

A. Filter Table—includes three chains:

INPUT chain
OUTPUT chain
FORWARD chain

B. NAT Table—includes three chains:

PREROUTING chain—transfers the destination IP address (DNAT)
POSTROUTING chain—works after the routing process and before the Ethernet device
process to transfer the source IP address (SNAT)
OUTPUT chain—produces local packets

sub-tables

Source NAT (SNAT)—changes the first source packet IP address
Destination NAT (DNAT)—changes the first destination packet IP address
MASQUERADE—a special form for SNAT. If one host can connect to Internet, then
other computers that connect to this host can connect to the Internet when the computer
does not have an actual IP address.
REDIRECT—a special form of DNAT that re-sends packets to a local host independent
of the destination IP address.

C. Mangle Table—includes two chains

PREROUTING chain—pre-processes packets before the routing process.
OUTPUT chain—processes packets after the routing process.
It has three extensions—TTL, MARK, TOS.

The following figure shows the IPTABLES hierarchy.

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-8

The W311/321/341 support the following sub-modules. Be sure to use the module that matches
your application.

ip_conntrack ipt_MARK ipt_ah ipt_state
ip_conntrack_ftp ipt_MASQUERADE ipt_esp ipt_tcpmss
ipt_conntrack_irc ipt_MIRROT ipt_length ipt_tos
ip_nat_ftp ipt_REDIRECT ipt_limit ipt_ttl
ip_nat_irc ipt_REJECT ipt_mac ipt_unclean
ip_nat_snmp_basic ipt_TCPMSS ipt_mark
ip_queue ipt_TOS ipt_multiport
ipt_LOG ipt_ULOG ipt_owner

Incoming
Packets

Mangle Table
PREROUTING Chain

NAT Table
PREROUTING Chain

NAT Table
POSTROUTING Chain

Outgoing
Packets

Other Host
Packets

Mangle Table
FORWARD Chain

Filter Table
FORWARD Chain

Mangle Table
POSTROUTING Chain

Local Host
Packets

Mangle Table
INPUT Chain

Filter Table
INPUT Chain

Local
Process

Mangle Table
OUTPUT Chain

NAT Table
OUTPUT Chain

Filter Table
OUTPUT Chain

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-9

NOTE The W311/321/341 do NOT support IPV6 and ipchains.

The basic syntax to enable and load an IPTABLES module is as follows:
#lsmod
#insmod ip_tables
#insmod iptable_filter
Use lsmod to check if the ip_tables module has already been loaded in the W311/321/341 unit. Use
insmod to insert and enable the module.

Use the following command to load the modules (iptable_filter, iptable_mangle, iptable_nat):
#insmod iptable_filter
Use iptables, iptables-restore, iptables-save to maintain the database.

NOTE IPTABLES plays the role of packet filtering or NAT. Take care when setting up the IPTABLES
rules. If the rules are not correct, remote hosts that connect via a LAN or PPP may be denied
access. We recommend using the serial console to set up the IPTABLES.

Click on the following links for more information about iptables.

http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

Since the IPTABLES command is very complex, to illustrate the IPTABLES syntax we have
divided our discussion of the various rules into three categories: Observe and erase chain rules,
Define policy rules, and Append or delete rules.

Observe and erase chain rules
Usage:
iptables [-t tables] [-L] [-n]

-t tables: Table to manipulate (default: ‘filter’); example: nat or filter.
-L [chain]: List List all rules in selected chains. If no chain is selected, all chains are listed.
-n: Numeric output of addresses and ports.

iptables [-t tables] [-FXZ]
-F: Flush the selected chain (all the chains in the table if none is listed).
-X: Delete the specified user-defined chain.
-Z: Set the packet and byte counters in all chains to zero.

Examples:
iptables -L -n
In this example, since we do not use the -t parameter, the system uses the default ‘filter’ table.
Three chains are included: INPUT, OUTPUT, and FORWARD. INPUT chains are accepted
automatically, and all connections are accepted without being filtered.
#iptables –F
#iptables –X
#iptables -Z

http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

4-10

Define policy for chain rules
Usage:
iptables [-t tables] [-P] [INPUT, OUTPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING]
[ACCEPT, DROP]
-P: Set the policy for the chain to the given target.
INPUT: For packets coming into the W311/321/341.
OUTPUT: For locally-generated packets.
FORWARD: For packets routed out through the W311/321/341.
PREROUTING: To alter packets as soon as they come in.
POSTROUTING: To alter packets as they are about to be sent out.

Examples:
#iptables –P INPUT DROP
#iptables –P OUTPUT ACCEPT
#iptables –P FORWARD ACCEPT
#iptables –t nat –P PREROUTING ACCEPT
#iptables –t nat –P OUTPUT ACCEPT
#iptables -t nat –P POSTROUTING ACCEPT
In this example, the policy accepts outgoing packets and denies incoming packets.

Append or delete rules:
Usage:
iptables [-t table] [-AI] [INPUT, OUTPUT, FORWARD] [-io interface] [-p tcp, udp, icmp,
all] [-s IP/network] [--sport ports] [-d IP/network] [--dport ports] –j [ACCEPT. DROP]

-A: Append one or more rules to the end of the selected chain.
-I: Insert one or more rules in the selected chain as the given rule number.
-i: Name of an interface via which a packet is going to be received.
-o: Name of an interface via which a packet is going to be sent.
-p: The protocol of the rule or of the packet to check.
-s: Source address (network name, host name, network IP address, or plain IP address).
--sport: Source port number.
-d: Destination address.
--dport: Destination port number.
-j: Jump target. Specifies the target of the rules; i.e., how to handle matched packets. For

example, ACCEPT the packet, DROP the packet, or LOG the packet.

Examples:

Example 1: Accept all packets from lo interface.
iptables –A INPUT –i lo –j ACCEPT

Example 2: Accept TCP packets from 192.168.0.1.
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.1 –j ACCEPT

Example 3: Accept TCP packets from Class C network 192.168.1.0/24.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.0/24 –j ACCEPT

Example 4: Drop TCP packets from 192.168.1.25.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.25 –j DROP

Example 5: Drop TCP packets addressed for port 21.
iptables –A INPUT –i eth0 –p tcp --dport 21 –j DROP

Example 6: Accept TCP packets from 192.168.0.24 to W341’s port 137, 138, 139
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.24 --dport 137:139 –j ACCEPT

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

4-11

Example 8: Drop all packets from MAC address 01:02:03:04:05:06.
iptables –A INPUT –i eth0 –p all –m mac -–mac-source 01:02:03:04:05:06 –j DROP

NOTE: In Example 8, remember to issue the command #insmod ipt_mac first to load module
ipt_mac.

NAT
NAT (Network Address Translation) protocol translates IP addresses used on one network to
different IP addresses used on another network. One network is designated the inside network and
the other is the outside network. Typically, the W311/321/341 connect several devices on a
network and maps local inside network addresses to one or more global outside IP addresses, and
un-maps the global IP addresses on incoming packets back into local IP addresses.

NOTE Click on the following link for more information about iptables and NAT:
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

NAT Example
The IP address of LAN1 is changed to 192.168.3.127 (you will need to load the module
ipt_MASQUERADE):

Embedded Computer

PC1 (Linux or Windows)

IP/Netmask:
Gateway:

192.168.3.100/24
192.168.3.127

PC2 (Linux or Windows)

IP/Netmask:
Gateway:

192.168.4.100/24
192.168.4.127

LAN1

LAN2

LAN1: 192.168.3.127/24

LAN2: 192.168.4.127/24

NAT Area / Private IP

1. #echo 1 > /proc/sys/net/ipv4/ip_forward
2. #insmod ip_tables
3. #insmod iptable_ filter
4. #insmod ip_conntrack
5. #insmod iptable_nat
6. #insmod ipt_MASQUERADE
7. #iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 192.168.3.127
8. #iptables -t nat -A POSTROUTING -o eth0 -s 192.168.3.0/24 -j MASQUERADE

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

4-12

Enabling NAT at Bootup
In most real world situations, you will want to use a simple shell script to enable NAT when the
W341 boots up. The following script is an example.
#!/bin/bash
If you put this shell script in the /home/nat.sh
Remember to chmod 744 /home/nat.sh
Edit the rc.local file to make this shell startup automatically.
vi /etc/rc.d/rc.local
Add a line in the end of rc.local /home/nat.sh
EXIF=‘eth0’ #This is an external interface for setting up a valid IP address.
EXNET=‘192.168.4.0/24’ #This is an internal network address.
Step 1. Insert modules.
Here 2> /dev/null means the standard error messages will be dump to null device.
insmod ip_tables 2> /dev/null
insmod ip_conntrack 2> /dev/null
insmod ip_conntrack_ftp 2> /dev/null
insmod ip_conntrack_irc 2> /dev/null
insmod iptable_nat 2> /dev/null
insmod ip_nat_ftp 2> /dev/null
insmod ip_nat_irc 2> /dev/null
Step 2. Define variables, enable routing and erase default rules.
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin
export PATH
echo “1” > /proc/sys/net/ipv4/ip_forward
/bin/iptables -F
/bin/iptables -X
/bin/iptables -Z
/bin/iptables -F -t nat
/bin/iptables -X -t nat
/bin/iptables -Z -t nat
/bin/iptables -P INPUT ACCEPT
/bin/iptables -P OUTPUT ACCEPT
/bin/iptables -P FORWARD ACCEPT
/bin/iptables -t nat -P PREROUTING ACCEPT
/bin/iptables -t nat -P POSTROUTING ACCEPT
/bin/iptables -t nat -P OUTPUT ACCEPT
Step 3. Enable IP masquerade.

Dial-up Service—PPP
PPP (Point to Point Protocol) is used to run IP (Internet Protocol) and other network protocols over
a serial link. PPP can be used for direct serial connections (using a null-modem cable) over a
Telnet link, and links established using a modem over a telephone line.

Modem / PPP access is almost identical to connecting directly to a network through the
W311/321/341’s Ethernet port. Since PPP is a peer-to-peer system, the W311/321/341 can also
use PPP to link two networks (or a local network to the Internet) to create a Wide Area Network
(WAN).

NOTE Click on the following links for more information about ppp:
http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

The pppd daemon is used to connect to a PPP server from a Linux system. For detailed
information about pppd see the man page.

Example 1: Connecting to a PPP server over a simple dial-up connection
The following command is used to connect to a PPP server by modem. Use this command for old
ppp servers that prompt for a login name (replace username with the correct name) and password
(replace password with the correct password). Note that debug and defaultroute 192.1.1.17 are

http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

4-13

optional.
#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT ogin: username word: password’
/dev/ttyM0 115200 debug crtscts modem defaultroute

If the PPP server does not prompt for the username and password, the command should be entered
as follows. Replace username with the correct username and replace password with the correct
password.
#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT ‘user username password password
/dev/ttyM0 115200 crtscts modem

The pppd options are described below:
connect ‘chat etc...’
This option gives the command to contact the PPP server. The ‘chat’ program is used to dial a
remote computer. The entire command is enclosed in single quotes because pppd expects a
one-word argument for the ‘connect’ option. The options for ‘chat’ are given below:
-v
verbose mode; log what we do to syslog
“ “

“ “

“ “

Double quotes—don’t wait for a prompt, but instead do ... (note that you must include a space
after the second quotation mark)
ATDT5551212
Dial the modem, and then ...
CONNECT
Wait for an answer.
“ “
Send a return (null text followed by the usual return)
ogin: username word: password
Log in with username and password.

Refer to the chat man page, chat.8, for more information about the chat utility.
/dev/
Specify the callout serial port.
115200
The baudrate.
debug
Log status in syslog.
crtscts
Use hardware flow control between computer and modem (at 115200 this is a must).
modem
Indicates that this is a modem device; pppd will hang up the phone before and after making the
call.
defaultroute
Once the PPP link is established, make it the default route; if you have a PPP link to the Internet,
this is probably what you want.
192.1.1.17
This is a degenerate case of a general option of the form x.x.x.x:y.y.y.y. Here x.x.x.x is the local IP
address and y.y.y.y is the IP address of the remote end of the PPP connection. If this option is not
specified, or if just one side is specified, then x.x.x.x defaults to the IP address associated with the
local machine’s hostname (located in /etc/hosts), and y.y.y.y is determined by the remote machine.

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

4-14

Example 2: Connecting to a PPP server over a hard-wired link
If a username and password are not required, use the following command (note that noipdefault is
optional):
#pppd connect ‘chat –v “ “ “ ‘ noipdefault /dev/ttyM0 19200 crtscts

If a username and password is required, use the following command (note that noipdefault is
optional, and root is both the username and password):
#pppd connect ‘chat –v “ “ “ ‘ user

 “

 “ root password root noipdefault
/dev/ttyM0 19200 crtscts

How to check the connection
Once you’ve set up a PPP connection, there are some steps you can take to test the connection.
First, type:
/sbin/ifconfig

(The folder ifconfig may be located elsewhere, depending on your distribution.) You should be
able to see all the network interfaces that are UP. ppp0 should be one of them, and you should
recognize the first IP address as your own, and the “P-t-P address” (or point-to-point address) the
address of your server. Here’s what it looks like on one machine:

lo Link encap Local Loopback
 inet addr 127.0.0.1 Bcast 127.255.255.255 Mask 255.0.0.0
 UP LOOPBACK RUNNING MTU 2000 Metric 1
 RX packets 0 errors 0 dropped 0 overrun 0

ppp0 Link encap Point-to-Point Protocol
 inet addr 192.76.32.3 P-t-P 129.67.1.165 Mask 255.255.255.0
 UP POINTOPOINT RUNNING MTU 1500 Metric 1
 RX packets 33 errors 0 dropped 0 overrun 0
 TX packets 42 errors 0 dropped 0 overrun 0

Now, type:
ping z.z.z.z

where z.z.z.z is the address of your name server. This should work. Here’s what the response
could look like:

 561.1.76.921 gnip p$~:notgniddaw
PING 129.67.1.165 (129.67.1.165): 56 data bytes
64 bytes from 129.67.1.165: icmp_seq=0 ttl=225 time=268 ms
64 bytes from 129.67.1.165: icmp_seq=1 ttl=225 time=247 ms
64 bytes from 129.67.1.165: icmp_seq=2 ttl=225 time=266 ms
^C

 --- scitsitats gnip 561.1.76.921 ---
3 packets transmitted, 3 packets received, 0% packet loss

 sm 862/062/742 = xam/gva/nim pirt-dnuor
 $~:notgniddaw

Try typing:
netstat –nr

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-15

This should show three routes, something like this:

Kernel routing table
Destination Gateway Genmask Flags Metric Ref Use
iface
129.67.1.165 0.0.0.0 255.255.255.255 UH 0 0 6
ppp0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 129.67.1.165 0.0.0.0 UG 0 0 6298
ppp0

If your output looks similar but doesn’t have the destination 0.0.0.0 line (which refers to the
default route used for connections), you may have run pppd without the ‘defaultroute’ option. At
this point you can try using Telnet, ftp, or finger, bearing in mind that you’ll have to use numeric
IP addresses unless you’ve set up /etc/resolv.conf correctly.

Setting up a Machine for Incoming PPP Connections
This first example applies to using a modem, and requiring authorization with a username and
password.
pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2 login auth

You should also add the following line to the file /etc/ppp/pap-secrets:
* * ““ *

The first star (*) lets everyone login. The second star (*) lets every host connect. The pair of
double quotation marks (““) is to use the file /etc/passwd to check the password. The last star (*)
is to let any IP connect.

The following example does not check the username and password:
pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2

PPPoE
1. Connect the W311/321/341’s LAN port to an ADSL modem with a cross-over cable, HUB, or

switch.
2. Log in to the W311/321/341 as the root user.
3. Edit the file /etc/ppp/chap-secrets and add the following:

“username@hinet.net” * “password” *

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account.
“password” is the corresponding password for the account.

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-16

4. Edit the file /etc/ppp/pap-secrets and add the following:
“username@hinet.net” * “password” *

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account.
“password” is the corresponding password for the account.

5. Edit the file /etc/ppp/options and add the following line:
plugin pppoe

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-17

6. Add one of two files: /etc/ppp/options.eth0 or /etc/ppp/options.eth1. The choice depends on
which LAN is connected to the ADSL modem. If you use LAN1 to connect to the ADSL
modem, then add /etc/ppp/options.eth0. If you use LAN2 to connect to the ADSL modem,
then add /etc/ppp/options.eth1. The file context is shown below:

Type your username (the one you set in the /etc/ppp/pap-secrets and /etc/ppp/chap-secrets
files) after the “name” option. You may add other options as desired.

7. Set up DNS
If you are using DNS servers supplied by your ISP, edit the file
/etc/resolv.conf by adding the following lines of code:

nameserver ip_addr_of_first_dns_server
nameserver ip_addr_of_second_dns_server

For example:
nameserver 168..95.1.1
nameserver 139.175.10.20

8. Use the following command to create a pppoe connection:
pppd eth0
The eth0 is what is connected to the ADSL modem LAN port. The example above uses LAN1.
To use LAN2, type:
pppd eth1

9. Type ifconfig ppp0 to check if the connection is OK or has failed. If the connection is OK,
you will see information about the ppp0 setting for the IP address. Use ping to test the IP.

10. If you want to disconnect it, use the kill command to kill the pppd process.

NFS (Network File System)
The Network File System (NFS) is used to mount a disk partition on a remote machine, as if it
were on a local hard drive, allowing fast, seamless sharing of files across a network. NFS allows
users to develop applications for the W311/321/341, without worrying about the amount of disk
space that will be available. The W311/321/341 supports NFS protocol for client.

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-18

NOTE Click on the following links for more information about NFS:
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

Setting up the W311/321/341 as an NFS Client
The following procedure is used to mount a remote NFS Server.

1. To know the NFS Server’s shared directory.
2. Establish a mount point on the NFS Client site.
3. Mount the remote directory to a local directory.
#mkdir –p /home/nfs/public
#mount –t nfs NFS_Server(IP):/directory /mount/point

Example
#mount –t nfs 192.168.3.100:/home/public /home/nfs/public

Mail
smtpclient is a minimal SMTP client that takes an email message body and passes it on to an
SMTP server. It is suitable for applications that use email to send alert messages or important logs
to a specific user.

NOTE Click on the following link for more information about smtpclient:
http://www.engelschall.com/sw/smtpclient/

To send an email message, use the ‘smtpclient’ utility, which uses SMTP protocol. Type
#smtpclient –help to see the help message.

Example:
smtpclient –s test –f sender@company.com –S IP_address receiver@company.com
< mail-body-message

-s: The mail subject.
-f: Sender’s mail address
-S: SMTP server IP address

The last mail address receiver@company.com is the receiver’s e-mail address.
mail-body-message is the mail content. The last line of the body of the message should contain
ONLY the period ‘.’ character.

You will need to add your hostname to the file /etc/hosts.

SNMP
The W311/321/341 have built-in SNMP V1 (Simple Network Management Protocol) agent
software. It supports RFC1317 RS-232 like group and RFC 1213 MIB-II.

The following simple example allows you to use an SNMP browser on the host site to query the
W311/321/341, which is the SNMP agent. The W311/321/341 will respond.
***** SNMP QUERY STARTED *****

1: sysDescr.0 (octet string) Version 1.0
2: sysObjectID.0 (object identifier) enterprises.8691.12.240

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html
http://www.engelschall.com/sw/smtpclient/

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-19

3: sysUpTime.0 (timeticks) 0 days 03h:50m:11s.00th (1381100)
4: sysContact.0 (octet string) Moxa Systems Co., LDT.
5: sysName.0 (octet string) Moxa
6: sysLocation.0 (octet string) Unknown
7: sysServices.0 (integer) 6
8: ifNumber.0 (integer) 6
9: ifIndex.1 (integer) 1
10: ifIndex.2 (integer) 2
11: ifIndex.3 (integer) 3
12: ifIndex.4 (integer) 4
13: ifIndex.5 (integer) 5
14: ifIndex.6 (integer) 6
15: ifDescr.1 (octet string) eth0
16: ifDescr.2 (octet string) eth1
17: ifDescr.3 (octet string) Serial port 0
18: ifDescr.4 (octet string) Serial port 1
19: ifDescr.5 (octet string) Serial port 2
20: ifDescr.6 (octet string) Serial port 3
21: ifType.1 (integer) ethernet-csmacd(6)
22: ifType.2 (integer) ethernet-csmacd(6)
23: ifType.3 (integer) other(1)
24: ifType.4 (integer) other(1)
25: ifType.5 (integer) other(1)
26: ifType.6 (integer) other(1)
27: ifMtu.1 (integer) 1500
28: ifMtu.2 (integer) 1500
29: ifMtu.3 (integer) 0
30: ifMtu.4 (integer) 0
31: ifMtu.5 (integer) 0
32: ifMtu.6 (integer) 0
33: ifSpeed.1 (gauge) 100000000
34: ifSpeed.2 (gauge) 100000000
35: ifSpeed.3 (gauge) 38400
36: ifSpeed.4 (gauge) 38400
37: ifSpeed.5 (gauge) 38400
38: ifSpeed.6 (gauge) 38400
39: ifPhysAddress.1 (octet string) 00.90.E8.10.02.41 (hex)
40: ifPhysAddress.2 (octet string) 00.90.E8.10.02.40 (hex)
41: ifPhysAddress.3 (octet string) 00 (hex)
42: ifPhysAddress.4 (octet string) 00 (hex)
43: ifPhysAddress.5 (octet string) 00 (hex)
44: ifPhysAddress.6 (octet string) 00 (hex)
45: ifAdminStatus.1 (integer) up(1)
46: ifAdminStatus.2 (integer) up(1)
47: ifAdminStatus.3 (integer) down(2)
48: ifAdminStatus.4 (integer) down(2)
49: ifAdminStatus.5 (integer) down(2)
50: ifAdminStatus.6 (integer) down(2)
51: ifOperStatus.1 (integer) up(1)
52: ifOperStatus.2 (integer) up(1)
53: ifOperStatus.3 (integer) down(2)
54: ifOperStatus.4 (integer) down(2)
55: ifOperStatus.5 (integer) down(2)
56: ifOperStatus.6 (integer) down(2)
57: ifLastChange.1 (timeticks) 0 days 00h:00m:00s.00th (0)
58: ifLastChange.2 (timeticks) 0 days 00h:00m:00s.00th (0)
59: ifLastChange.3 (timeticks) 0 days 00h:00m:00s.00th (0)
60: ifLastChange.4 (timeticks) 0 days 00h:00m:00s.00th (0)
61: ifLastChange.5 (timeticks) 0 days 00h:00m:00s.00th (0)
62: ifLastChange.6 (timeticks) 0 days 00h:00m:00s.00th (0)
63: ifInOctets.1 (counter) 25511
64: ifInOctets.2 (counter) 2240203
65: ifInOctets.3 (counter) 0
66: ifInOctets.4 (counter) 0
67: ifInOctets.5 (counter) 0
68: ifInOctets.6 (counter) 0
69: ifInUcastPkts.1 (counter) 254

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-20

70: ifInUcastPkts.2 (counter) 28224
71: ifInUcastPkts.3 (counter) 0
72: ifInUcastPkts.4 (counter) 0
73: ifInUcastPkts.5 (counter) 0
74: ifInUcastPkts.6 (counter) 0
75: ifInNUcastPkts.1 (counter) 0
76: ifInNUcastPkts.2 (counter) 0
77: ifInNUcastPkts.3 (counter) 0
78: ifInNUcastPkts.4 (counter) 0
79: ifInNUcastPkts.5 (counter) 0
80: ifInNUcastPkts.6 (counter) 0
81: ifInDiscards.1 (counter) 0
82: ifInDiscards.2 (counter) 0
83: ifInDiscards.3 (counter) 0
84: ifInDiscards.4 (counter) 0
85: ifInDiscards.5 (counter) 0
86: ifInDiscards.6 (counter) 0
87: ifInErrors.1 (counter) 0
88: ifInErrors.2 (counter) 0
89: ifInErrors.3 (counter) 0
90: ifInErrors.4 (counter) 0
91: ifInErrors.5 (counter) 0
92: ifInErrors.6 (counter) 0
93: ifInUnknownProtos.1 (counter) 0
94: ifInUnknownProtos.2 (counter) 0
95: ifInUnknownProtos.3 (counter) 0
96: ifInUnknownProtos.4 (counter) 0
97: ifInUnknownProtos.5 (counter) 0
98: ifInUnknownProtos.6 (counter) 0
99: ifOutOctets.1 (counter) 51987
100: ifOutOctets.2 (counter) 3832
101: ifOutOctets.3 (counter) 0
102: ifOutOctets.4 (counter) 0
103: ifOutOctets.5 (counter) 0
104: ifOutOctets.6 (counter) 0
105: ifOutUcastPkts.1 (counter) 506
106: ifOutUcastPkts.2 (counter) 42
107: ifOutUcastPkts.3 (counter) 0
108: ifOutUcastPkts.4 (counter) 0
109: ifOutUcastPkts.5 (counter) 0
110: ifOutUcastPkts.6 (counter) 0
111: ifOutNUcastPkts.1 (counter) 0
112: ifOutNUcastPkts.2 (counter) 0
113: ifOutNUcastPkts.3 (counter) 0
114: ifOutNUcastPkts.4 (counter) 0
115: ifOutNUcastPkts.5 (counter) 0
116: ifOutNUcastPkts.6 (counter) 0
117: ifOutDiscards.1 (counter) 0
118: ifOutDiscards.2 (counter) 0
119: ifOutDiscards.3 (counter) 0
120: ifOutDiscards.4 (counter) 0
121: ifOutDiscards.5 (counter) 0
122: ifOutDiscards.6 (counter) 0
123: ifOutErrors.1 (counter) 0
124: ifOutErrors.2 (counter) 0
125: ifOutErrors.3 (counter) 0
126: ifOutErrors.4 (counter) 0
127: ifOutErrors.5 (counter) 0
128: ifOutErrors.6 (counter) 0
129: ifOutQLen.1 (gauge) 1000
130: ifOutQLen.2 (gauge) 1000
131: ifOutQLen.3 (gauge) 0
132: ifOutQLen.4 (gauge) 0
133: ifOutQLen.5 (gauge) 0
134: ifOutQLen.6 (gauge) 0
135: ifSpecific.1 (object identifier) (null-oid) zeroDotZero
136: ifSpecific.2 (object identifier) (null-oid) zeroDotZero

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-21

137: ifSpecific.3 (object identifier) (null-oid) zeroDotZero
138: ifSpecific.4 (object identifier) (null-oid) zeroDotZero
139: ifSpecific.5 (object identifier) (null-oid) zeroDotZero
140: ifSpecific.6 (object identifier) (null-oid) zeroDotZero
141: atIfIndex.1.192.168.27.139 (integer) 1
142: atIfIndex.2.192.168.4.127 (integer) 2
143: atPhysAddress.1.192.168.27.139 (octet string) 00.90.E8.10.02.41 (hex)
144: atPhysAddress.2.192.168.4.127 (octet string) 00.90.E8.10.02.40 (hex)
145: atNetAddress.1.192.168.27.139 (ipaddress) 192.168.27.139
146: atNetAddress.2.192.168.4.127 (ipaddress) 192.168.4.127
147: ipForwarding.0 (integer) forwarding(1)
148: ipDefaultTTL.0 (integer) 64
149: ipInReceives.0 (counter) 1289
150: ipInHdrErrors.0 (counter) 0
151: ipInAddrErrors.0 (counter) 0
152: ipForwDatagrams.0 (counter) 9
153: ipInUnknownProtos.0 (counter) 0
154: ipInDiscards.0 (counter) 0
155: ipInDelivers.0 (counter) 1160
156: ipOutRequests.0 (counter) 858
157: ipOutDiscards.0 (counter) 0
158: ipOutNoRoutes.0 (counter) 0
159: ipReasmTimeout.0 (integer) 0
160: ipReasmReqds.0 (counter) 0
161: ipReasmOKs.0 (counter) 0
162: ipReasmFails.0 (counter) 0
163: ipFragOKs.0 (counter) 0
164: ipFragFails.0 (counter) 0
165: ipFragCreates.0 (counter) 0
166: ipAdEntAddr.192.168.27.139 (ipaddress) 192.168.27.139
167: ipAdEntAddr.192.168.4.127 (ipaddress) 192.168.4.127
168: ipAdEntIfIndex.192.168.27.139 (integer) 1
169: ipAdEntIfIndex.192.168.4.127 (integer) 2
170: ipAdEntNetMask.192.168.27.139 (ipaddress) 255.255.255.0
171: ipAdEntNetMask.192.168.4.127 (ipaddress) 255.255.255.0
172: ipAdEntBcastAddr.192.168.27.139 (integer) 1
173: ipAdEntBcastAddr.192.168.4.127 (integer) 1
174: ipAdEntReasmMaxSize.192.168.27.139 (integer) 65535
175: ipAdEntReasmMaxSize.192.168.4.127 (integer) 65535
176: ipRouteDest.192.168.4.0 (ipaddress) 192.168.4.0
177: ipRouteDest.192.168.27.0 (ipaddress) 192.168.27.0
178: ipRouteIfIndex.192.168.4.0 (integer) 2
179: ipRouteIfIndex.192.168.27.0 (integer) 1
180: ipRouteMetric1.192.168.4.0 (integer) 0
181: ipRouteMetric1.192.168.27.0 (integer) 0
182: ipRouteMetric2.192.168.4.0 (integer) -1
183: ipRouteMetric2.192.168.27.0 (integer) -1
184: ipRouteMetric3.192.168.4.0 (integer) -1
185: ipRouteMetric3.192.168.27.0 (integer) -1
186: ipRouteMetric4.192.168.4.0 (integer) -1
187: ipRouteMetric4.192.168.27.0 (integer) -1
188: ipRouteNextHop.192.168.4.0 (ipaddress) 192.168.4.127
189: ipRouteNextHop.192.168.27.0 (ipaddress) 192.168.27.139
190: ipRouteType.192.168.4.0 (integer) direct(3)
191: ipRouteType.192.168.27.0 (integer) direct(3)
192: ipRouteProto.192.168.4.0 (integer) local(2)
193: ipRouteProto.192.168.27.0 (integer) local(2)
194: ipRouteAge.192.168.4.0 (integer) 0
195: ipRouteAge.192.168.27.0 (integer) 0
196: ipRouteMask.192.168.4.0 (ipaddress) 255.255.255.0
197: ipRouteMask.192.168.27.0 (ipaddress) 255.255.255.0
198: ipRouteMetric5.192.168.4.0 (integer) -1
199: ipRouteMetric5.192.168.27.0 (integer) -1
200: ipRouteInfo.192.168.4.0 (object identifier) (null-oid) zeroDotZero
201: ipRouteInfo.192.168.27.0 (object identifier) (null-oid) zeroDotZero
202: ipNetToMediaIfIndex.1.192.168.27.139 (integer) 1
203: ipNetToMediaIfIndex.2.192.168.4.127 (integer) 2

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-22

204: ipNetToMediaPhysAddress.1.192.168.27.139 (octet string) 00.90.E8.10.02.41 (hex)
205: ipNetToMediaPhysAddress.2.192.168.4.127 (octet string) 00.90.E8.10.02.40 (hex)
206: ipNetToMediaNetAddress.1.192.168.27.139 (ipaddress) 192.168.27.139
207: ipNetToMediaNetAddress.2.192.168.4.127 (ipaddress) 192.168.4.127
208: ipNetToMediaType.1.192.168.27.139 (integer) static(4)
209: ipNetToMediaType.2.192.168.4.127 (integer) static(4)
210: ipRoutingDiscards.0 (integer) 0
211: icmpInMsgs.0 (counter) 130
212: icmpInErrors.0 (counter) 3
213: icmpInDestUnreachs.0 (counter) 128
214: icmpInTimeExcds.0 (counter) 0
215: icmpInParmProbs.0 (counter) 0
216: icmpInSrcQuenchs.0 (counter) 0
217: icmpInRedirects.0 (counter) 0
218: icmpInEchos.0 (counter) 2
219: icmpInEchoReps.0 (counter) 0
220: icmpInTimestamps.0 (counter) 0
221: icmpInTimestampReps.0 (counter) 0
222: icmpInAddrMasks.0 (counter) 0
223: icmpInAddrMaskReps.0 (counter) 0
224: icmpOutMsgs.0 (counter) 144
225: icmpOutErrors.0 (counter) 0
226: icmpOutDestUnreachs.0 (counter) 135
227: icmpOutTimeExcds.0 (counter) 0
228: icmpOutParmProbs.0 (counter) 0
229: icmpOutSrcQuenchs.0 (counter) 0
230: icmpOutRedirects.0 (counter) 7
231: icmpOutEchos.0 (counter) 0
232: icmpOutEchoReps.0 (counter) 2
233: icmpOutTimestamps.0 (counter) 0
234: icmpOutTimestampReps.0 (counter) 0
235: icmpOutAddrMasks.0 (counter) 0
236: icmpOutAddrMaskReps.0 (counter) 0
237: tcpRtoAlgorithm.0 (integer) other(1)
238: tcpRtoMin.0 (integer) 200
239: tcpRtoMax.0 (integer) 120000
240: tcpMaxConn.0 (integer) -1
241: tcpActiveOpens.0 (counter) 0
242: tcpPassiveOpens.0 (counter) 0
243: tcpAttemptFails.0 (counter) 0
244: tcpEstabResets.0 (counter) 0
245: tcpCurrEstab.0 (gauge) 0
246: tcpInSegs.0 (counter) 0
247: tcpOutSegs.0 (counter) 0
248: tcpRetransSegs.0 (counter) 0
249: tcpConnState.192.168.27.139.1024.0.0.0.0.0 (integer) listen(2)
250: tcpConnState.192.168.4.127.1024.0.0.0.0.0 (integer) listen(2)
251: tcpConnState.192.168.27.139.1025.0.0.0.0.0 (integer) listen(2)
252: tcpConnState.192.168.4.127.1025.0.0.0.0.0 (integer) listen(2)
253: tcpConnState.192.168.27.139.2049.0.0.0.0.0 (integer) listen(2)
254: tcpConnState.192.168.4.127.2049.0.0.0.0.0 (integer) listen(2)
255: tcpConnState.192.168.27.139.1026.0.0.0.0.0 (integer) listen(2)
256: tcpConnState.192.168.4.127.1026.0.0.0.0.0 (integer) listen(2)
257: tcpConnState.192.168.27.139.9.0.0.0.0.0 (integer) listen(2)
258: tcpConnState.192.168.4.127.9.0.0.0.0.0 (integer) listen(2)
259: tcpConnState.192.168.27.139.111.0.0.0.0.0 (integer) listen(2)
260: tcpConnState.192.168.4.127.111.0.0.0.0.0 (integer) listen(2)
261: tcpConnState.192.168.27.139.80.0.0.0.0.0 (integer) listen(2)
262: tcpConnState.192.168.4.127.80.0.0.0.0.0 (integer) listen(2)
263: tcpConnState.192.168.27.139.21.0.0.0.0.0 (integer) listen(2)
264: tcpConnState.192.168.4.127.21.0.0.0.0.0 (integer) listen(2)
265: tcpConnState.192.168.27.139.22.0.0.0.0.0 (integer) listen(2)
266: tcpConnState.192.168.4.127.22.0.0.0.0.0 (integer) listen(2)
267: tcpConnState.192.168.27.139.23.0.0.0.0.0 (integer) listen(2)
268: tcpConnState.192.168.4.127.23.0.0.0.0.0 (integer) listen(2)
269: tcpConnLocalAddress.192.168.27.139.1024.0.0.0.0.0 (ipaddress) 192.168.27.139
270: tcpConnLocalAddress.192.168.4.127.1024.0.0.0.0.0 (ipaddress) 192.168.4.127

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-23

271: tcpConnLocalAddress.192.168.27.139.1025.0.0.0.0.0 (ipaddress) 192.168.27.139
272: tcpConnLocalAddress.192.168.4.127.1025.0.0.0.0.0 (ipaddress) 192.168.4.127
273: tcpConnLocalAddress.192.168.27.139.2049.0.0.0.0.0 (ipaddress) 192.168.27.139
274: tcpConnLocalAddress.192.168.4.127.2049.0.0.0.0.0 (ipaddress) 192.168.4.127
275: tcpConnLocalAddress.192.168.27.139.1026.0.0.0.0.0 (ipaddress) 192.168.27.139
276: tcpConnLocalAddress.192.168.4.127.1026.0.0.0.0.0 (ipaddress) 192.168.4.127
277: tcpConnLocalAddress.192.168.27.139.9.0.0.0.0.0 (ipaddress) 192.168.27.139
278: tcpConnLocalAddress.192.168.4.127.9.0.0.0.0.0 (ipaddress) 192.168.4.127
279: tcpConnLocalAddress.192.168.27.139.111.0.0.0.0.0 (ipaddress) 192.168.27.139
280: tcpConnLocalAddress.192.168.4.127.111.0.0.0.0.0 (ipaddress) 192.168.4.127
281: tcpConnLocalAddress.192.168.27.139.80.0.0.0.0.0 (ipaddress) 192.168.27.139
282: tcpConnLocalAddress.192.168.4.127.80.0.0.0.0.0 (ipaddress) 192.168.4.127
283: tcpConnLocalAddress.192.168.27.139.21.0.0.0.0.0 (ipaddress) 192.168.27.139
284: tcpConnLocalAddress.192.168.4.127.21.0.0.0.0.0 (ipaddress) 192.168.4.127
285: tcpConnLocalAddress.192.168.27.139.22.0.0.0.0.0 (ipaddress) 192.168.27.139
286: tcpConnLocalAddress.192.168.4.127.22.0.0.0.0.0 (ipaddress) 192.168.4.127
287: tcpConnLocalAddress.192.168.27.139.23.0.0.0.0.0 (ipaddress) 192.168.27.139
288: tcpConnLocalAddress.192.168.4.127.23.0.0.0.0.0 (ipaddress) 192.168.4.127
289: tcpConnLocalPort.192.168.27.139.1024.0.0.0.0.0 (integer) 1024
290: tcpConnLocalPort.192.168.4.127.1024.0.0.0.0.0 (integer) 1024
291: tcpConnLocalPort.192.168.27.139.1025.0.0.0.0.0 (integer) 1025
292: tcpConnLocalPort.192.168.4.127.1025.0.0.0.0.0 (integer) 1025
293: tcpConnLocalPort.192.168.27.139.2049.0.0.0.0.0 (integer) 2049
294: tcpConnLocalPort.192.168.4.127.2049.0.0.0.0.0 (integer) 2049
295: tcpConnLocalPort.192.168.27.139.1026.0.0.0.0.0 (integer) 1026
296: tcpConnLocalPort.192.168.4.127.1026.0.0.0.0.0 (integer) 1026
297: tcpConnLocalPort.192.168.27.139.9.0.0.0.0.0 (integer) 9
298: tcpConnLocalPort.192.168.4.127.9.0.0.0.0.0 (integer) 9
299: tcpConnLocalPort.192.168.27.139.111.0.0.0.0.0 (integer) 111
300: tcpConnLocalPort.192.168.4.127.111.0.0.0.0.0 (integer) 111
301: tcpConnLocalPort.192.168.27.139.80.0.0.0.0.0 (integer) 80
302: tcpConnLocalPort.192.168.4.127.80.0.0.0.0.0 (integer) 80
303: tcpConnLocalPort.192.168.27.139.21.0.0.0.0.0 (integer) 21
304: tcpConnLocalPort.192.168.4.127.21.0.0.0.0.0 (integer) 21
305: tcpConnLocalPort.192.168.27.139.22.0.0.0.0.0 (integer) 22
306: tcpConnLocalPort.192.168.4.127.22.0.0.0.0.0 (integer) 22
307: tcpConnLocalPort.192.168.27.139.23.0.0.0.0.0 (integer) 23
308: tcpConnLocalPort.192.168.4.127.23.0.0.0.0.0 (integer) 23
309: tcpConnRemAddress.192.168.27.139.1024.0.0.0.0.0 (ipaddress) 0.0.0.0
310: tcpConnRemAddress.192.168.4.127.1024.0.0.0.0.0 (ipaddress) 0.0.0.0
311: tcpConnRemAddress.192.168.27.139.1025.0.0.0.0.0 (ipaddress) 0.0.0.0
312: tcpConnRemAddress.192.168.4.127.1025.0.0.0.0.0 (ipaddress) 0.0.0.0
313: tcpConnRemAddress.192.168.27.139.2049.0.0.0.0.0 (ipaddress) 0.0.0.0
314: tcpConnRemAddress.192.168.4.127.2049.0.0.0.0.0 (ipaddress) 0.0.0.0
315: tcpConnRemAddress.192.168.27.139.1026.0.0.0.0.0 (ipaddress) 0.0.0.0
316: tcpConnRemAddress.192.168.4.127.1026.0.0.0.0.0 (ipaddress) 0.0.0.0
317: tcpConnRemAddress.192.168.27.139.9.0.0.0.0.0 (ipaddress) 0.0.0.0
318: tcpConnRemAddress.192.168.4.127.9.0.0.0.0.0 (ipaddress) 0.0.0.0
319: tcpConnRemAddress.192.168.27.139.111.0.0.0.0.0 (ipaddress) 0.0.0.0
320: tcpConnRemAddress.192.168.4.127.111.0.0.0.0.0 (ipaddress) 0.0.0.0
321: tcpConnRemAddress.192.168.27.139.80.0.0.0.0.0 (ipaddress) 0.0.0.0
322: tcpConnRemAddress.192.168.4.127.80.0.0.0.0.0 (ipaddress) 0.0.0.0
323: tcpConnRemAddress.192.168.27.139.21.0.0.0.0.0 (ipaddress) 0.0.0.0
324: tcpConnRemAddress.192.168.4.127.21.0.0.0.0.0 (ipaddress) 0.0.0.0
325: tcpConnRemAddress.192.168.27.139.22.0.0.0.0.0 (ipaddress) 0.0.0.0
326: tcpConnRemAddress.192.168.4.127.22.0.0.0.0.0 (ipaddress) 0.0.0.0
327: tcpConnRemAddress.192.168.27.139.23.0.0.0.0.0 (ipaddress) 0.0.0.0
328: tcpConnRemAddress.192.168.4.127.23.0.0.0.0.0 (ipaddress) 0.0.0.0
329: tcpConnRemPort.192.168.27.139.1024.0.0.0.0.0 (integer) 0
330: tcpConnRemPort.192.168.4.127.1024.0.0.0.0.0 (integer) 0
331: tcpConnRemPort.192.168.27.139.1025.0.0.0.0.0 (integer) 0
332: tcpConnRemPort.192.168.4.127.1025.0.0.0.0.0 (integer) 0
333: tcpConnRemPort.192.168.27.139.2049.0.0.0.0.0 (integer) 0
334: tcpConnRemPort.192.168.4.127.2049.0.0.0.0.0 (integer) 0
335: tcpConnRemPort.192.168.27.139.1026.0.0.0.0.0 (integer) 0
336: tcpConnRemPort.192.168.4.127.1026.0.0.0.0.0 (integer) 0
337: tcpConnRemPort.192.168.27.139.9.0.0.0.0.0 (integer) 0

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-24

338: tcpConnRemPort.192.168.4.127.9.0.0.0.0.0 (integer) 0
339: tcpConnRemPort.192.168.27.139.111.0.0.0.0.0 (integer) 0
340: tcpConnRemPort.192.168.4.127.111.0.0.0.0.0 (integer) 0
341: tcpConnRemPort.192.168.27.139.80.0.0.0.0.0 (integer) 0
342: tcpConnRemPort.192.168.4.127.80.0.0.0.0.0 (integer) 0
343: tcpConnRemPort.192.168.27.139.21.0.0.0.0.0 (integer) 0
344: tcpConnRemPort.192.168.4.127.21.0.0.0.0.0 (integer) 0
345: tcpConnRemPort.192.168.27.139.22.0.0.0.0.0 (integer) 0
346: tcpConnRemPort.192.168.4.127.22.0.0.0.0.0 (integer) 0
347: tcpConnRemPort.192.168.27.139.23.0.0.0.0.0 (integer) 0
348: tcpConnRemPort.192.168.4.127.23.0.0.0.0.0 (integer) 0
349: tcpInErrs.0 (counter) 6
350: tcpOutRsts.0 (counter) 37224
351: udpInDatagrams.0 (counter) 434
352: udpNoPorts.0 (counter) 8
353: udpInErrors.0 (counter) 0
354: udpOutDatagrams.0 (counter) 903
355: udpLocalAddress.192.168.27.139.1024 (ipaddress) 192.168.27.139
356: udpLocalAddress.192.168.4.127.1024 (ipaddress) 192.168.4.127
357: udpLocalAddress.192.168.27.139.2049 (ipaddress) 192.168.27.139
358: udpLocalAddress.192.168.4.127.2049 (ipaddress) 192.168.4.127
359: udpLocalAddress.192.168.27.139.1026 (ipaddress) 192.168.27.139
360: udpLocalAddress.192.168.4.127.1026 (ipaddress) 192.168.4.127
361: udpLocalAddress.192.168.27.139.1027 (ipaddress) 192.168.27.139
362: udpLocalAddress.192.168.4.127.1027 (ipaddress) 192.168.4.127
363: udpLocalAddress.192.168.27.139.9 (ipaddress) 192.168.27.139
364: udpLocalAddress.192.168.4.127.9 (ipaddress) 192.168.4.127
365: udpLocalAddress.192.168.27.139.161 (ipaddress) 192.168.27.139
366: udpLocalAddress.192.168.4.127.161 (ipaddress) 192.168.4.127
367: udpLocalAddress.192.168.27.139.4800 (ipaddress) 192.168.27.139
368: udpLocalAddress.192.168.4.127.4800 (ipaddress) 192.168.4.127
369: udpLocalAddress.192.168.27.139.854 (ipaddress) 192.168.27.139
370: udpLocalAddress.192.168.4.127.854 (ipaddress) 192.168.4.127
371: udpLocalAddress.192.168.27.139.111 (ipaddress) 192.168.27.139
372: udpLocalAddress.192.168.4.127.111 (ipaddress) 192.168.4.127
373: udpLocalPort.192.168.27.139.1024 (integer) 1024
374: udpLocalPort.192.168.4.127.1024 (integer) 1024
375: udpLocalPort.192.168.27.139.2049 (integer) 2049
376: udpLocalPort.192.168.4.127.2049 (integer) 2049
377: udpLocalPort.192.168.27.139.1026 (integer) 1026
378: udpLocalPort.192.168.4.127.1026 (integer) 1026
379: udpLocalPort.192.168.27.139.1027 (integer) 1027
380: udpLocalPort.192.168.4.127.1027 (integer) 1027
381: udpLocalPort.192.168.27.139.9 (integer) 9
382: udpLocalPort.192.168.4.127.9 (integer) 9
383: udpLocalPort.192.168.27.139.161 (integer) 161
384: udpLocalPort.192.168.4.127.161 (integer) 161
385: udpLocalPort.192.168.27.139.4800 (integer) 4800
386: udpLocalPort.192.168.4.127.4800 (integer) 4800
387: udpLocalPort.192.168.27.139.854 (integer) 854
388: udpLocalPort.192.168.4.127.854 (integer) 854
389: udpLocalPort.192.168.27.139.111 (integer) 111
390: udpLocalPort.192.168.4.127.111 (integer) 111
391: rs232Number.0 (integer) 4
392: rs232PortIndex.1 (integer) 1 [1]
393: rs232PortIndex.2 (integer) 2 [2]
394: rs232PortIndex.3 (integer) 3 [3]
395: rs232PortIndex.4 (integer) 4 [4]
396: rs232PortType.1 (integer) rs232(2)
397: rs232PortType.2 (integer) rs232(2)
398: rs232PortType.3 (integer) rs232(2)
399: rs232PortType.4 (integer) rs232(2)
400: rs232PortInSigNumber.1 (integer) 3
401: rs232PortInSigNumber.2 (integer) 3
402: rs232PortInSigNumber.3 (integer) 3
403: rs232PortInSigNumber.4 (integer) 3
404: rs232PortOutSigNumber.1 (integer) 2

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-25

405: rs232PortOutSigNumber.2 (integer) 2
406: rs232PortOutSigNumber.3 (integer) 2
407: rs232PortOutSigNumber.4 (integer) 2
408: rs232PortInSpeed.1 (integer) 38400
409: rs232PortInSpeed.2 (integer) 38400
410: rs232PortInSpeed.3 (integer) 38400
411: rs232PortInSpeed.4 (integer) 38400
412: rs232PortOutSpeed.1 (integer) 38400
413: rs232PortOutSpeed.2 (integer) 38400
414: rs232PortOutSpeed.3 (integer) 38400
415: rs232PortOutSpeed.4 (integer) 38400
416: rs232AsyncPortIndex.1 (integer) 1 [1]
417: rs232AsyncPortIndex.2 (integer) 2 [2]
418: rs232AsyncPortIndex.3 (integer) 3 [3]
419: rs232AsyncPortIndex.4 (integer) 4 [4]
420: rs232AsyncPortBits.1 (integer) 8
421: rs232AsyncPortBits.2 (integer) 8
422: rs232AsyncPortBits.3 (integer) 8
423: rs232AsyncPortBits.4 (integer) 8
424: rs232AsyncPortStopBits.1 (integer) one(1)
425: rs232AsyncPortStopBits.2 (integer) one(1)
426: rs232AsyncPortStopBits.3 (integer) one(1)
427: rs232AsyncPortStopBits.4 (integer) one(1)
428: rs232AsyncPortParity.1 (integer) none(1)
429: rs232AsyncPortParity.2 (integer) none(1)
430: rs232AsyncPortParity.3 (integer) none(1)
431: rs232AsyncPortParity.4 (integer) none(1)
432: rs232InSigPortIndex.1.2 (integer) 1 [1]
433: rs232InSigPortIndex.2.2 (integer) 2 [2]
434: rs232InSigPortIndex.3.2 (integer) 3 [3]
435: rs232InSigPortIndex.4.2 (integer) 4 [4]
436: rs232InSigPortIndex.1.3 (integer) 1 [1]
437: rs232InSigPortIndex.2.3 (integer) 2 [2]
438: rs232InSigPortIndex.3.3 (integer) 3 [3]
439: rs232InSigPortIndex.4.3 (integer) 4 [4]
440: rs232InSigPortIndex.1.6 (integer) 1 [1]
441: rs232InSigPortIndex.2.6 (integer) 2 [2]
442: rs232InSigPortIndex.3.6 (integer) 3 [3]
443: rs232InSigPortIndex.4.6 (integer) 4 [4]
444: rs232InSigName.1.2 (integer) cts(2)
445: rs232InSigName.2.2 (integer) cts(2)
446: rs232InSigName.3.2 (integer) cts(2)
447: rs232InSigName.4.2 (integer) cts(2)
448: rs232InSigName.1.3 (integer) dsr(3)
449: rs232InSigName.2.3 (integer) dsr(3)
450: rs232InSigName.3.3 (integer) dsr(3)
451: rs232InSigName.4.3 (integer) dsr(3)
452: rs232InSigName.1.6 (integer) dcd(6)
453: rs232InSigName.2.6 (integer) dcd(6)
454: rs232InSigName.3.6 (integer) dcd(6)
455: rs232InSigName.4.6 (integer) dcd(6)
456: rs232InSigState.1.2 (integer) off(3)
457: rs232InSigState.2.2 (integer) off(3)
458: rs232InSigState.3.2 (integer) off(3)
459: rs232InSigState.4.2 (integer) off(3)
460: rs232InSigState.1.3 (integer) off(3)
461: rs232InSigState.2.3 (integer) off(3)
462: rs232InSigState.3.3 (integer) off(3)
463: rs232InSigState.4.3 (integer) off(3)
464: rs232InSigState.1.6 (integer) off(3)
465: rs232InSigState.2.6 (integer) off(3)
466: rs232InSigState.3.6 (integer) off(3)
467: rs232InSigState.4.6 (integer) off(3)
468: rs232OutSigPortIndex.1.1 (integer) 1 [1]
469: rs232OutSigPortIndex.2.1 (integer) 2 [2]
470: rs232OutSigPortIndex.3.1 (integer) 3 [3]
471: rs232OutSigPortIndex.4.1 (integer) 4 [4]

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-26

472: rs232OutSigPortIndex.1.4 (integer) 1 [1]
473: rs232OutSigPortIndex.2.4 (integer) 2 [2]
474: rs232OutSigPortIndex.3.4 (integer) 3 [3]
475: rs232OutSigPortIndex.4.4 (integer) 4 [4]
476: rs232OutSigName.1.1 (integer) rts(1)
477: rs232OutSigName.2.1 (integer) rts(1)
478: rs232OutSigName.3.1 (integer) rts(1)
479: rs232OutSigName.4.1 (integer) rts(1)
480: rs232OutSigName.1.4 (integer) dtr(4)
481: rs232OutSigName.2.4 (integer) dtr(4)
482: rs232OutSigName.3.4 (integer) dtr(4)
483: rs232OutSigName.4.4 (integer) dtr(4)
484: rs232OutSigState.1.1 (integer) off(3)
485: rs232OutSigState.2.1 (integer) off(3)
486: rs232OutSigState.3.1 (integer) off(3)
487: rs232OutSigState.4.1 (integer) off(3)
488: rs232OutSigState.1.4 (integer) off(3)
489: rs232OutSigState.2.4 (integer) off(3)
490: rs232OutSigState.3.4 (integer) off(3)
491: rs232OutSigState.4.4 (integer) off(3)
492: snmpInPkts.0 (counter) 493
493: snmpOutPkts.0 (counter) 493
494: snmpInBadVersions.0 (counter) 0
495: snmpInBadCommunityNames.0 (counter) 0
496: snmpInBadCommunityUses.0 (counter) 0
497: snmpInASNParseErrs.0 (counter) 0
498: snmpInTooBigs.0 (counter) 0
499: snmpInNoSuchNames.0 (counter) 0
500: snmpInBadValues.0 (counter) 0
501: snmpInReadOnlys.0 (counter) 0
502: snmpInGenErrs.0 (counter) 0
503: snmpInTotalReqVars.0 (counter) 503
504: snmpInTotalSetVars.0 (counter) 0
505: snmpInGetRequests.0 (counter) 0
506: snmpInGetNexts.0 (counter) 506
507: snmpInSetRequests.0 (counter) 0
508: snmpInGetResponses.0 (counter) 0
509: snmpInTraps.0 (counter) 0
510: snmpOutTooBigs.0 (counter) 0
511: snmpOutNoSuchNames.0 (counter) 0
512: snmpOutBadValues.0 (counter) 0
513: snmpOutGenErrs.0 (counter) 0
514: snmpOutGetRequests.0 (counter) 0
515: snmpOutGetNexts.0 (counter) 0
516: snmpOutSetRequests.0 (counter) 0
517: snmpOutGetResponses.0 (counter) 517
518: snmpOutTraps.0 (counter) 0
519: snmpEnableAuthenTraps.0 (integer) disabled(2)

***** SNMP QUERY FINISHED *****

NOTE Click on the following links for more information about MIB II and RS-232 like groups:
http://www.faqs.org/rfcs/rfc1213.html
http://www.faqs.org/rfcs/rfc1317.html

 W311/321/341 do NOT support SNMP trap.

http://www.faqs.org/rfcs/rfc1213.html
http://www.faqs.org/rfcs/rfc1317.html

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-27

OpenVPN
OpenVPN provides two types of tunnels for users to implement VPNS: Routed IP Tunnels and
Bridged Ethernet Tunnels. To begin with, check to make sure that the system has a virtual
device /dev/net/tun. If not, issue the following command:
mknod /dev/net/tun c 10 200

An Ethernet bridge is used to connect different Ethernet networks together. The Ethernets are
bundled into one bigger, “logical” Ethernet. Each Ethernet corresponds to one physical interface
(or port) that is connected to the bridge.

On each OpenVPN machine, you should generate a working directory, such as /etc/openvpn,
where script files and key files reside. Once established, all operations will be performed in that
directory.

Setup 1: Ethernet Bridging for Private Networks on Different Subnets
1. Set up four machines, as shown in the following diagram.

OpenVPN A

OpenVPN B

Host A

LAN1: 192.168.2.171

Host B

LAN1: 192.168.4.172
LAN1: 192.168.8.174

LAN1: 192.168.2.173

local net

local net

In
te

rn
et

In
te

rn
et

LAN2: 192.168.4.174

LAN2: 192.168.8.173

Host A (B) represents one of the machines that belongs to OpenVPN A (B). The two remote
subnets are configured for a different range of IP addresses. When this setup is moved to a
public network, the external interfaces of the OpenVPN machines should be configured for
static IPs, or connect to another device (such as a firewall or DSL box) first.
openvpn --genkey --secret secrouter.key

Copy the file that is generated to the OpenVPN machine.

2. Generate a script file named openvpn-bridge on each OpenVPN machine. This script
reconfigures interface “eth1” as IP-less, creates logical bridge(s) and TAP interfaces, loads
modules, enables IP forwarding, etc.
#---------------------------------Start-----------------------------

#!/bin/sh

iface=eth1 # defines the internal interface
maxtap=`expr 1` # defines the number of tap devices. I.e., # of tunnels

IPADDR=

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-28

NETMASK=
BROADCAST=

it is not a great idea but this system doesn’t support
/etc/sysconfig/network-scripts/ifcfg-eth1
ifcfg_vpn()
{
 while read f1 f2 f3 f4 r3
 do
 if [“$f1” = “iface” -a “$f2” = “$iface” -a “$f3” = “inet” -a “$f4” = “static”];then
 i=`expr 0`
 while :
 do
 if [$i -gt 5]; then
 break
 fi
 i=`expr $i + 1`
 read f1 f2
 case “$f1” in
 address) IPADDR=$f2
 ;;
 netmask) NETMASK=$f2
 ;;
 broadcast) BROADCAST=$f2
 ;;
 esac
 done
 break
 fi
 done < /etc/network/interfaces
}

get the ip address of the specified interface
mname=
module_up()
{
 oIFS=$IFS
 IFS=‘
 ‘
 FOUND=“no”
 for LINE in `lsmod`
 do
 TOK=`echo $LINE | cut -d’ ‘ -f1`
 if [“$TOK” = “$mname”]; then
 FOUND=“yes”;
 break;
 fi
 done
 IFS=$oIFS

 if [“$FOUND” = “no”]; then
 modprobe $mname
 fi
}

start()
{
 ifcfg_vpn
 if [! \(-d “/dev/net” \)]; then
 mkdir /dev/net
 fi

 if [! \(-r “/dev/net/tun” \)]; then
 # create a device file if there is none
 mknod /dev/net/tun c 10 200
 fi

 # load modules “tun” and “bridge”

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-29

 mname=tun
 module_up
 mname=bridge
 module_up
 # create an ethernet bridge to connect tap devices, internal interface
 brctl addbr br0
 brctl addif br0 $iface
 # the bridge receives data from any port and forwards it to other ports.

 i=`expr 0`
 while :
 do
 # generate a tap0 interface on tun
 openvpn --mktun --dev tap${i}

 # connect tap device to the bridge
 brctl addif br0 tap${i}

 # null ip address of tap device
 ifconfig tap${i} 0.0.0.0 promisc up

 i=`expr $i + 1`
 if [$i -ge $maxtap]; then
 break
 fi
 done

 # null ip address of internal interface
 ifconfig $iface 0.0.0.0 promisc up

 # enable bridge ip
 ifconfig br0 $IPADDR netmask $NETMASK broadcast $BROADCAST

 ipf=/proc/sys/net/ipv4/ip_forward
 # enable IP forwarding
 echo 1 > $ipf
 echo “ip forwarding enabled to”
 cat $ipf
}

stop() {
 echo “shutdown openvpn bridge.”
 ifcfg_vpn
 i=`expr 0`
 while :
 do
 # disconnect tap device from the bridge
 brctl delif br0 tap${i}
 openvpn --rmtun --dev tap${i}

 i=`expr $i + 1`
 if [$i -ge $maxtap]; then
 break
 fi
 done
 brctl delif br0 $iface
 brctl delbr br0
 ifconfig br0 down
 ifconfig $iface $IPADDR netmask $NETMASK broadcast $BROADCAST
 killall -TERM openvpn
}

case “$1” in
 start)
 start
 ;;
 stop)
 stop

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-30

 ;;
 restart)
 stop
 start
 ;;
 *)
 echo “Usage: $0 [start|stop|restart]”
 exit 1
esac
exit 0
#---------------------------------- end -----------------------------

Create link symbols to enable this script at boot time:
ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc3.d/S32vpn-br # for example
ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc6.d/K32vpn-br # for example

3. Create a configuration file named A-tap0-br.conf and an executable script file named
A-tap0-br.sh on OpenVPN A.
point to the peer
remote 192.168.8.174
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/A-tap0-br.sh

#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 dev br0
#---------------------------------- end ------------------------------

Create a configuration file named B-tap0-br.conf and an executable script file named
B-tap0-br.sh on OpenVPN B.
point to the peer
remote 192.168.8.173
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/B-tap0-br.sh

#---------------------------------- Start----------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 dev br0
#---------------------------------- end -----------------------------

Note: Select cipher and authentication algorithms by specifying “cipher” and “auth”. To see
with algorithms are available, type:
openvpn --show-ciphers
openvpn --show—auths

4. Start both of OpenVPN peers,
openvpn --config A-tap0-br.conf&
openvpn --config B-tap0-br.conf&

If you see the line “Peer Connection Initiated with 192.168.8.173:5000” on each machine, the
connection between OpenVPN machines has been established successfully on UDP port 5000.

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-31

5. On each OpenVPN machine, check the routing table by typing the command:
route

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.0 * 255.255.255.0 U 0 0 0 br0
192.168.2.0 * 255.255.255.0 U 0 0 0 br0
192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

Interface eth1 is connected to the bridging interface br0, to which device tap0 also connects,
whereas the virtual device tun sits on top of tap0. This ensures that all traffic from internal
networks connected to interface eth1 that come to this bridge write to the TAP/TUN device
that the OpenVPN program monitors. Once the OpenVPN program detects traffic on the
virtual device, it sends the traffic to its peer.

6. To create an indirect connection to Host B from Host A, you need to add the following routing
item:
route add –net 192.168.4.0 netmask 255.255.255.0 dev eth0

To create an indirect connection to Host A from Host B, you need to add the following routing
item:
route add –net 192.168.2.0 netmask 255.255.255.0 dev eth0

Now ping Host B from Host A by typing:
ping 192.168.4.174

A successful ping indicates that you have created a VPN system that only allows authorized
users from one internal network to access users at the remote site. For this system, all data is
transmitted by UDP packets on port 5000 between OpenVPN peers.

7. To shut down OpenVPN programs, type the command:
killall -TERM openvpn

Setup 2: Ethernet Bridging for Private Networks on the Same Subnet
1. Set up four machines as shown in the following diagram:

OpenVPN A

OpenVPN B

Host A

LAN1: 192.168.2.171

Host B

LAN1: 192.168.4.172
LAN1: 192.168.8.174

LAN1: 192.168.2.173

local net

local net

In
te

rn
et

In
te

rn
et

LAN2: 192.168.4.174

LAN2: 192.168.8.173

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-32

2. The configuration procedure is almost the same as for the previous example. The only
difference is that you will need to comment out the parameter “up” in
“/etc/openvpn/A-tap0-br.conf” and “/etc/openvpn/B-tap0-br.conf”.

Setup 3: Routed IP
1. Set up four machines as shown in the following diagram:

OpenVPN A

OpenVPN B

Host A

LAN1: 192.168.2.171

Host B

LAN1: 192.168.4.172
LAN1: 192.168.8.174

LAN1: 192.168.2.173

local net

local net

In
te

rn
et

In
te

rn
et

LAN2: 192.168.4.174

LAN2: 192.168.8.173

2. Create a configuration file named “A-tun.conf” and an executable script file named

“A-tun.sh”.
point to the peer
remote 192.168.8.174
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.2.173 192.168.4.174
up /etc/openvpn/A-tun.sh

#--------------------------------- Start-----------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 gw $5
#--------------------------------- end ------------------------------

Create a configuration file named B-tun.conf and an executable script file named B-tun.sh on
OpenVPN B:
remote 192.168.8.173
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.4.174 192.168.2.173
up /etc/openvpn/B-tun.sh

#--------------------------------- Start----------------------------
#!/bin/sh

ThinkCore W311/321/341 Linux User’s Manual Managing Communications

 4-33

value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 gw $5
#--------------------------------- end -----------------------------

Note that the parameter “ifconfig” defines the first argument as the local internal interface and
the second argument as the internal interface at the remote peer.

Note that $5 is the argument that the OpenVPN program passes to the script file. Its value is
the second argument of ifconfig in the configuration file.

3. Check the routing table after you run the OpenVPN programs, by typing the command:
route

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.174 * 255.255.255.255 UH 0 0 0 tun0
192.168.4.0 192.168.4.174 255.255.255.0 UG 0 0 0 tun0
192.168.2.0 * 255.255.255.0 U 0 0 0 eth1
192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

55
Chapter 5 Tool Chains for Application

Development

This chapter describes how to install a tool chain in the host computer that you use to develop your
applications. In addition, the process of performing cross-platform development and debugging are
also introduced. For clarity, the W311/321/341 embedded computer is called a target computer.

The following functions are covered in this chapter:

 Linux Tool Chain
 Steps for Installing the Linux Tool Chain
 Compilation for Applications
 On-Line Debugging with GDB

 Windows Tool Chain
 System Requirements for Windows Tool Chain
 Steps for Installing Windows Tool Chain
 Using the BASH Shell
 Compilation for Applications
 On-Line Debugging with Insight

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-2

Linux Tool Chain
The Linux tool chain contains a suite of cross compilers and other tools, as well as the libraries
and header files that are necessary to compile your applications. These tool chain components
must be installed in your host computer (PC) running Linux. We have confirmed that the
following Linux distributions can be used to install the tool chain.
Fefora core 1 & 2.

Steps for Installing the Linux Tool Chain
The tool chain needs about 485 MB of hard disk space. To install it, follow the steps.
1. Insert the package CD into your PC and then issue the following commands:

#mount /dev/cdrom /mnt/cdrom
#sh /mnt/cdrom/tool-chain/linux/install.sh

2. Wait for the installation process to complete. This should take a few minutes.
3. Add the directory /usr/local/arm-linux/bin to your path. You can do this for the current login

by issuing the following commands:
#export PATH=“/usr/local/arm-linux/bin:$PATH”
Alternatively, you can add the same commands to $HOME/.bash_profile to make it
effective for all login sessions.

Compilation for Applications
To compile a simple C application, use the cross compiler instead of the regular compiler:
#arm-linux-gcc –o example –Wall –g –O2 example.c
#arm-linux-strip –s example
#arm-linux-gcc -ggdb –o example-debug example.c

Most of the cross compiler tools are the same as their native compiler counterparts, but with an
additional prefix that specifies the target system. In the case of x86 environments, the prefix is
i386-linux- and in the case of IA204/241 ARM boards, it is arm-linux-.

For example, the native C compiler is gcc and the cross C compiler for ARM in the
W311/321/341 is arm-linux-gcc.

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-3

The following cross compiler tools are provided:

ar Manages archives (static libraries)
as Assembler
c++, g++ C++ compiler
cpp C preprocessor
gcc C compiler
gdb Debugger
ld Linker
nm Lists symbols from object files
objcopy Copies and translates object files
objdump Displays information about object files
ranlib Generates indexes to archives (static libraries)
readelf Displays information about ELF files
size Lists object file section sizes
strings Prints strings of printable characters from files (usually object files)
strip Removes symbols and sections from object files (usually debugging information)

On-Line Debugging with GDB
The tool chain also provides an on-line debugging mechanism to help you develop your program.
Before performing a debugging session, add the option -ggdb to compile the program. A
debugging session runs on a client-server architecture on which the server gdbserver is installed
int the targe computer and the client ddd is installed in the host computer. We’ll asuumne that you
have uploaded a program named hello-debug to the target computer and strat to debug the
program.

1. Log on to the target computer and run the debugging server program.
#gdbserver 192.168.4.142:2000 hello-debug

Process hello-debug created; pid=38

The debugging server listens for connections at network port 2000 from the network interface
192.168.4.142. The name of the program to be debugged follows these parameters. For a
program requiring arguments, add the arguments behind the program name.

2. In the host computer, change the directory to where the program source resides.
cd /my_work_directory/myfilesystem/testprograms

3. Execute the client program.
#ddd --debugger arm-linux-gdb hello-debug &

4. Enter the following command at the GDB, DDD command prompt.
Target remote 192.168.4.99:2000

The command produces a line of output on the target console, similar to the following.
Remote debugging using 192.168.4.99:2000

192.168.4.99 is the machine’s IP address, and 2000 is the port number. You can now begin
debugging in the host environment using the interface provided by DDD.

5. Set a break point on main by double clicking, or by entering b main on the command line.
6. Click the cont button.

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-4

Windows Tool Chain
The Windows tool chain is a cross development environment that simulates the Linux root file
system, allowing users to develop applications in a Windows PC environment. The following
figure shows an example of what the tool chain looks like.

 /

Your group is currently “mkpasswd”. This indicates that
The /etc/passwd (and possibly /etc/group) files should be rebuil
See the man pages for mkpasswd and mkgroup then, for example, ru
mkpasswd –l [-d] > /etc/passwd
mkpasswd –l [-d] > /etc/group
Note that the –d switch is necessary for domain users.

stephen_lin@abc-06d82fcbf1a /
$ ls –al
total 9
drwxr—xr-x 8 stephen_ mkpasswd 0 Jan 10 17:24 .
drwxr—xr-x 8 stephen_ mkpasswd 0 Jan 10 17:24 ..
drwxr—xr-x 2 stephen_ mkpasswd 0 Jan 10 19:48 bin
drwxr—xr-x 7 stephen_ mkpasswd 0 Jan 10 19:24 etc
-rw-r--r-- 1 stephen_ mkpasswd 3262 Jan 10 22:03 insight.ico
drwxr—xr-x 5 stephen_ mkpasswd 0 Jan 10 19:48 lib
-rwxr—xr-x 1 stephen_ mkpasswd 53 Jan 10 22:03 moxa.bat
-rw-r--r-- 1 stephen_ mkpasswd 3262 Jan 10 22:03 moxa.ico
drwxr—xr-x 2 stephen_ mkpasswd 0 Jan 10 19:48 tmp
drwxr—xr-x 14 stephen_ mkpasswd 0 Jan 10 19:48 usr
drwxr—xr-x 6 stephen_ mkpasswd 0 Jan 10 18:12 var

stephen_lin@abc-06d82fcbf1a /
$ _

System Requirements for Windows Tool Chain
Your Windows OS must satisfy the following requirements.

1. Windows 2000 workstation or Windows XP professional.
2. Minimum of 500 MB of free hard drive space on a single drive.
3. CD-ROM or equivalent.
4. Ethernet capabilty to upload application programs to the target computer.
5. Being able to log on as an administrator.
6. Windows username without spaces.
You will be using a BASH shell window to enter commands. In addition, for editing text files,
such as configuration files, you should use vi editor. Do NOT use WordPad, which could cause
problems when the files are transferred to a bona fide Linux environment.

Steps for Installing Windows Tool Chain
If you have installed the old version of Windows Tool Chain or other Cygwin-related software,
please remove these softwares and then follow the next procedure.

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-5

1. Double click on the tool chain file to start the installtion process, and choose Next.

2. Browse to the directory where you prefer to set the root directory for the tool chain. Options of
All Users and Unix are recommended. Then, choose Next.

If you have installed a tool chain before, its root directory would show up in the Root
Directory text field. If you continue the installation, the new tool chain in a previous root
directory would override the old one. Choose a different directory to keep both tool chains.

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-6

3. Navigate to the directory where the packages of the tool chain reside. By default, it is on the
CD-ROM: \\tool-chain\windows. Choose Next to proceed.

It may take anywhere from 5 to 20 minutes to check the packages in the CD-ROM.

4. All packages are selected by default. Choose Next to continue.

 Category column: Shows a hierarchical display of packages with category name highest

and package name lowest. Click the plus sign (+) next to a category name to open the
category and see the packages within that category.

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-7

 Base Category: List all packages that will be installed by default (along with any
dependencies). If you view the Base column for the Base category, you should see every
package selected for installation.

 Packages: In the packages listing field, package names are arranged by
Category/Full/Partial according to the View by button. When viewing by Category, click
the plus sign (+) to open or close the packages under that category. This is the same list
you see in flat form when viewing by Full/Partial. By default, named packages are
installed.

 Install: If the package was not previously installed, select this option to install the package
now.

 Reinstall: If the package was previously installed, select this option to install it again. This
will overwrite the previous installation.

 Uninstall: If the package was previously installed, select this option if you do NOT want to
make any changes.

 Skip: Ignores a package entirely, regardless of whether it was previously installed or
uninstalled. Packages marked “Skip” are omitted from the Partial display.

5. The Progress window opens. The installer will install all packages that were selected. This
process could take from 5 to 30 minutes, depending on the speed of your system. When the
installation completes, the Complete the Installation window will appear.

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-8

6. Checkmark Create icon on Desktop to place a Moxa BASH Shell icon on your desktop, and
then click on Finish.

7. Click on OK to complete the installation process.

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-9

Using the BASH Shell
A command-line interface is used to develop applications with the tool chain. To access the
command line, you need to launch a BASH shell window.

To open a BASH shell window, choose Start Menu Programs UC Tool Chain Moxa
Bash Shell, or click on the desktop Moxa Bash Shell icon.

 /

Your group is currently “mkpasswd”. This indicates that
The /etc/passwd (and possibly /etc/group) files should be rebuil
See the man pages for mkpasswd and mkgroup then, for example, ru
mkpasswd –l [-d] > /etc/passwd
mkpasswd –l [-d] > /etc/group
Note that the –d switch is necessary for domain users.

stephen_lin@abc-06d82fcbf1a /
$ ls –al
total 9
drwxr—xr-x 8 stephen_ mkpasswd 0 Jan 10 17:24 .
drwxr—xr-x 8 stephen_ mkpasswd 0 Jan 10 17:24 ..
drwxr—xr-x 2 stephen_ mkpasswd 0 Jan 10 19:48 bin
drwxr—xr-x 7 stephen_ mkpasswd 0 Jan 10 19:24 etc
-rw-r--r-- 1 stephen_ mkpasswd 3262 Jan 10 22:03 insight.ico
drwxr—xr-x 5 stephen_ mkpasswd 0 Jan 10 19:48 lib
-rwxr—xr-x 1 stephen_ mkpasswd 53 Jan 10 22:03 moxa.bat
-rw-r--r-- 1 stephen_ mkpasswd 3262 Jan 10 22:03 moxa.ico
drwxr—xr-x 2 stephen_ mkpasswd 0 Jan 10 19:48 tmp
drwxr—xr-x 14 stephen_ mkpasswd 0 Jan 10 19:48 usr
drwxr—xr-x 6 stephen_ mkpasswd 0 Jan 10 18:12 var

stephen_lin@abc-06d82fcbf1a /
$ _

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-10

Compilation for Applications
Windows tool chain is a cross compiler that can be used to compile Linux source code on a
Windows operating system, allowing programmers to develop projects on a Windows-based PC.
In this section, we describe the procedures you should follow to compile a project with the
Windows tool chain.

First, copy the source code of your project in the Windows tool chain’s installation directory. In
the example shown here, we want to compile the hello example provided in our CD-ROM. We
will copy the source code to /UC which is the root directory of the Windows tool chain. Check the
root directory, where you can find the hello directory.

 /

Mkpasswd –l [-d] > /etc/passwd
Mkgroup –l [-d] > /etc/group
Note that the –d switch is necessary for domain users.

Jared_Wu@Jared_Wu ~
$ cd /

Jared_Wu@Jared_Wu /
$ ls –al
total 9
drwxrwx--- 9 Jared_Wu 4294967295 0 Nov 4 18:11 .
drwxrwx--- 9 Jared_Wu 4294967295 0 Nov 4 18:11 .
drwxrwx--- 2 Jared_Wu 4294967295 0 Nov 4 11:10 bin
drwxrwx--- 7 Jared_Wu 4294967295 0 Nov 4 11:10 etc
drwx------ 2 Jared_Wu mkpasswd 0 Nov 4 18:07 hello
-rwxr-x--- 1 Jared_Wu 4294967295 3262 Nov 4 11:12 insight.ico
drwxrwx--- 5 Jared_Wu 4294967295 0 Nov 4 11:10 lib
-rwxr-x--- 1 Jared_Wu 4294967295 53 Nov 4 10:12 moxa.bat
-rwxr-x--- 1 Jared_Wu 4294967295 3262 Nov 4 11:12 moxa.ico
drwxrwx--- 4 Jared_Wu 4294967295 0 Nov 4 18:11 tmp
drwxrwx--- 13 Jared_Wu 4294967295 0 Nov 4 11:06 usr
drwxrwx--- 6 Jared_Wu 4294967295 0 Nov 4 11:06 var

Jared_Wu@Jared_Wu /
$

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-11

Next, enter the hello directory and invoke the make program that will execute the compilation
instructions written in the Makefile to compile the hello project.

 /hello

drwxrwx--- 7 Jared_Wu 4294967295 0 Nov 4 11:10 etc
drwx------ 2 Jared_Wu mkpasswd 0 Nov 4 18:07 hello
-rwxr-x--- 1 Jared_Wu 4294967295 3262 Nov 4 11:12 insight.ico
drwxrwx--- 5 Jared_Wu 4294967295 0 Nov 4 11:10 lib
-rwxr-x--- 1 Jared_Wu 4294967295 53 Nov 4 10:12 moxa.bat
-rwxr-x--- 1 Jared_Wu 4294967295 3262 Nov 4 11:12 moxa.ico
drwxrwx--- 4 Jared_Wu 4294967295 0 Nov 4 18:11 tmp
drwxrwx--- 13 Jared_Wu 4294967295 0 Nov 4 11:06 usr
drwxrwx--- 6 Jared_Wu 4294967295 0 Nov 4 11:06 var

Jared_Wu@Jared_Wu /
$ cd hello/

Jared_Wu@Jared_Wu /hello
$ make
/usr/local/mxscaleb/bin/mxscaleb-gcc –o hello-release hello.c
/usr/local/mxscaleb/bin/mxscaleb-strip –s hello-release
/usr/local/mxscaleb/bin/mxscaleb-gcc –ggdb -o hello-debug hello.c

Jared_Wu@Jared_Wu /hello
$ ls
Makefile README hello-debug hello-release hello.c

Jared_Wu@Jared_Wu /hello
$

After that, use FTP to upload the executable file to the UC, and then run the executable.

 /hello

ftp> bye

Jared_Wu@Jared_Wu /hello
$ ftp 192.168.14.9
Connected to 192.168.14.9.
220 Moxa FTP server <Version wu-2.6.1<2> Mon Nov 24 12:17:04 CST 2003> ready.
User <192.168.14.9:<none>>: root
331 Password required for root.
Password:
230 User root logged in.
ftp> bin
200 PORT command successful.
150 Opening BINARY mode data connection for hello-release.
226 Transfer complete.
ftp: 2744 bytes sent in 0.00Seconds 2744000.00Kbytes/sec.
ftp> bye
221-You have transferred 2744 bytes in 1 files.
221-Total traffic for this session was 3131 bytes in 1 transfers.
221-Thank you for using the FTP service on Moxa.
221 Goodbye.

Jared_Wu@Jared_Wu /hello
$
root@Moxa:~# chmod 777 hello-release
root@Moxa:~# ./hello-release
Hello

ThinkCore W311/321/341 Linux User’s Manual Tool Chains for Application Development

 5-12

On-Line Debugging with Insight
Insight is a graphical user interface that accompanies GDB, the GNU Debugger was written in
Tcl/Tk by people working at Red Hat, Inc., and Cygnus Solutions. Red Hat was generous enough
to make Insight available for public use, and continues to maintain the program.

Click on http://sources.redhat.com/insight/ for more information about using Insight, or click on
Help Topics under the Help menu to read the user manual.

http://sources.redhat.com/insight/

66
Chapter 6 Programmer’s Guide

This chapter includes important information for programmers.

The following functions are covered in this chapter:

 Flash Memory Map
 Device API
 RTC (Real Time Clock)
 Buzzer
 WDT (Watch Dog Timer)
 UART
 DO

ThinkCore W311/321/341 Linux User’s Manual Programmer’s Guide

 6-2

Flash Memory Map
Partition sizes are hard coded into the kernel binary. To change the partition sizes, you will need to
rebuild the kernel. The flash memory map is shown in the following table.
Address Size Contents
0x00000000 – 0x0003FFFF 256 KB Boot Loader—Read ONLY
0x00040000 – 0x001FFFFF 1.8 MB Kernel object code—Read ONLY
0x00200000 – 0x009FFFFF 8 MB Root file system (JFFS2) —Read ONLY
0x00A00000 – 0x00FFFFFF 6 MB User directory (JFFS2) —Read/Write

Mount the user file system to /mnt/usrdisk with the root file system. Check to see if the user file
system was mounted correctly. If user file system is okay, the kernel will change the root file
system to /mnt/usrdisk. If the user file system is not okay, the kernel will use the default Moxa
file system. To finish boot process, run the init program.

NOTE 1. The default Moxa file system only enables the network and CF. It lets users recover the user
file system when it fails.

2. The user file system is a complete file system. Users can create and delete directories and
files (including source code and executable files) as needed.

3. Users can create the user file system on the PC host or target platform, and then copy it to
the W311/321/341.

4. To improve system performance, we strongly recommend that you install your application
programs on the on-board flash. However, since the on-board flash has a fixed amount of
free memory space, you must not over-write it, and instead use an external storage card,
such as an SD or CF card, for the data log.

Device API
The W311/321/341 support control devices with the ioctl system API. You will need to include
<moxadevice.h>, and use the following ioctl function.
int ioctl(int d, int request,…);
 Input: int d - open device node return file handle

 int request – argument in or out

Use the desktop Linux’s man page for detailed documentation:
#man ioctl

RTC (Real Time Clock)
The device node is located at /dev/rtc. The W311/321/341 support Linux standard simple RTC
control. You must include <linux/rtc.h>.

1. Function: RTC_RD_TIME
int ioctl(fd, RTC_RD_TIME, struct rtc_time *time);

Description: read time information from RTC. It will return the value on argument 3.

2. Function: RTC_SET_TIME
int ioctl(fd, RTC_SET_TIME, struct rtc_time *time);

Description: set RTC time. Argument 3 will be passed to RTC.

ThinkCore W311/321/341 Linux User’s Manual Programmer’s Guide

 6-3

Buzzer
The device node is located at /dev/console. The W311/321/341 support Linux standard buzzer
control, with the W311/321/341’s buzzer running at a fixed frequency of 100 Hz. You must
include <sys/kd.h>.

Function: KDMKTONE
ioctl(fd, KDMKTONE, unsigned int arg);

Description: The buzzer’s behavior is determined by the argument arg. The “high word” part
of arg gives the length of time the buzzer will sound, and the “low word” part gives the
frequency.

The buzzer’s on / off behavior is controlled by software. If you call the “ioctl” function, you
MUST set the frequency at 100 Hz. If you use a different frequency, the system could crash.

WDT (Watch Dog Timer)
1. Introduction

The WDT works like a watch dog function. You can enable it or disable it. When the user
enables WDT but the application does not acknowledge it, the system will reboot. You can set
the ack time from a minimum of 50 msec to a maximum of 60 seconds.

2. How the WDT works

The sWatchDog is disabled when the system boots up. The user application can also enable
ack. When the user does not ack, it will let the system reboot.

Kernel boot
 …..
 ….
User application running and enable user ack
 ….
 ….

3. The user API

The user application must include <moxadevic.h>, and link moxalib.a. A makefile example
is shown below:
all:
 arm-linux-gcc –o xxxx xxxx.c -lmoxalib

int swtd_open(void)

Description
Open the file handle to control the sWatchDog. If you want to do something you must first to
this. And keep the file handle to do other.

Input
None

Output
The return value is file handle. If has some error, it will return < 0 value.

You can get error from errno().

ThinkCore W311/321/341 Linux User’s Manual Programmer’s Guide

 6-4

int swtd_enable(int fd, unsigned long time)

Description
Enable application sWatchDog. And you must do ack after this process.

Input
int fd - the file handle, from the swtd_open() return value.

unsigned long time - The time you wish to ack sWatchDog periodically. You must ack the
sWatchDog before timeout. If you do not ack, the system will be reboot automatically. The
minimal time is 50 msec, the maximum time is 60 seconds. The time unit is msec.

Output
OK will be zero. The other has some error, to get the error code from errno().

int swtd_disable(int fd)

Description
Disable the application to ack sWatchDog. And the kernel will be auto ack it. User does not to
do it at periodic.

Input
int fd - the file handle from swtd_open() return value.

Output
OK will be zero. The other has some error, to get error code from errno.

int swtd_get(int fd, int *mode, unsigned long *time)

Description
Get current setting values.

mode –
1 for user application enable sWatchDog: need to do ack.
0 for user application disable sWatchdog: does not need to do ack.

time – The time period to ack sWatchDog.

Input :
int fd - the file handle from swtd_open() return value.
int *mode - the function will be return the status enable or disable user application need to
do ack.
unsigned long *time – the function will return the current time period.

Output:
OK will be zero.

The other has some error, to get error code from errno().

ThinkCore W311/321/341 Linux User’s Manual Programmer’s Guide

 6-5

int swtd_ack(int fd)

Description
Acknowledge sWatchDog. When the user application enable sWatchDog. It need to call this
function periodically with user predefined time in the application program.

Input
int fd - the file handle from swtd_open() return value.

Output
OK will be zero.

The other has some error, to get error code from errno().

int swtd_close(int fd)

Description
Close the file handle.

Input
int fd - the file handle from swtd_open() return value.

Output
OK will be zero.

The other has some error, to get error code from errno().

4. Special Note

When you “kill the application with -9” or “kill without option” or “Ctrl+c” the kernel will
change to auto ack the sWatchDog.

When your application enables the sWatchDog and does not ack, your application may have a
logical error, or your application has made a core dump. The kernel will not change to auto
ack. This can cause a serious problem, causing your system to reboot again and again.

5. User application example

Example 1:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <moxadevice.h>

int main(int argc, char *argv[])
{
 int fd;

 fd = swtd_open();
 if (fd < 0) {
 printf(“Open sWatchDog device fail !\n”);
 exit(1);
 }
 swtd_enable(fd, 5000); // enable it and set it 5 seconds
 while (1) {
 // do user application want to do
 …..
 ….
 swtd_ack(fd);
 …..
 ….
 }
 swtd_close(fd);
 exit(0);

ThinkCore W311/321/341 Linux User’s Manual Programmer’s Guide

 6-6

}

The makefile is shown below:
all:
 arm-linux-gcc –o xxxx xxxx.c –lmoxalib

Example 2:
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <moxadevice.h>

static void mydelay(unsigned long msec)
{
 struct timeval time;

 time.tv_sec = msec / 1000;
 time.tv_usec = (msec % 1000) * 1000;
 select(1, NULL, NULL, NULL, &time);
}

static int swtdfd;
static int stopflag=0;

static void stop_swatchdog()
{
 stopflag = 1;
}

static void do_swatchdog(void)
{
 swtd_enable(swtdfd, 500);
 while (stopflag == 0) {
 mydelay(250);
 swtd_ack(swtdfd);
 }
 swtd_disable(swtdfd);
 }

int main(int argc, char *argv[])
{
 pid_t sonpid;

 signal(SIGUSR1, stop_swatchdog);
 swtdfd = swtd_open();
 if (swtdfd < 0) {
 printf(“Open sWatchDog device fail !\n”);
 exit(1);
 }
 if ((sonpid=fork()) == 0)
 do_swatchdog();
 // do user application main function
 …..
 …..
 …..
 // end user application
 kill(sonpid, SIGUSR1);
 swtd_close(swtdfd);
 exit(1);
}

ThinkCore W311/321/341 Linux User’s Manual Programmer’s Guide

 6-7

The makefile is shown below:
all:
 arm-linux-gcc –o xxxx xxxx.c –lmoxalib

UART
The normal tty device node is located at /dev/ttyM0 … ttyM3.

The W311/321/341 support Linux standard termios control. The Moxa UART Device API allows
you to configure ttyM0 to ttyM3 as RS-232, RS-422, 4-wire RS-485, or 2-wire RS-485. The
W311/321/341 support RS-232, RS-422, 2-wire RS-485, and 4-wire RS485.

You must include <moxadevice.h>.
#define RS232_MODE 0
#define RS485_2WIRE_MODE 1
#define RS422_MODE 2
#define RS485_4WIRE_MODE 3

1. Function: MOXA_SET_OP_MODE
int ioctl(fd, MOXA_SET_OP_MODE, &mode)

Description
Set the interface mode. Argument 3 mode will pass to the UART device driver and change it.

2. Function: MOXA_GET_OP_MODE
int ioctl(fd, MOXA_GET_OP_MODE, &mode)

Description
Get the interface mode. Argument 3 mode will return the interface mode.

There are two Moxa private ioctl commands for setting up special baudrates.

Function: MOXA_SET_SPECIAL_BAUD_RATE
Function: MOXA_GET_SPECIAL_BAUD_RATE

If you use this ioctl to set a special baudrate, the termios cflag will be B4000000, in which case the
B4000000 define will be different. If the baudrate you get from termios (or from calling tcgetattr())
is B4000000, you must call ioctl with MOXA_GET_SPECIAL_BAUD_RATE to get the actual
baudrate.

Example to set the baudrate
#include <moxadevice.h>
#include <termios.h>
struct termios term;
int fd, speed;
fd = open(“/dev/ttyM0”, O_RDWR);
tcgetattr(fd, &term);
term.c_cflag &= ~(CBAUD | CBAUDEX);
term.c_cflag |= B4000000;
tcsetattr(fd, TCSANOW, &term);
speed = 500000;
ioctl(fd, MOXA_SET_SPECIAL_BAUD_RATE, &speed);

Example to get the baudrate
 #include <moxadevice.h>
 #include <termios.h>
 struct termios term;
 int fd, speed;
 fd = open(“/dev/ttyM0”, O_RDWR);
 tcgetattr(fd, &term);

ThinkCore W311/321/341 Linux User’s Manual Programmer’s Guide

 6-8

if ((term.c_cflag & (CBAUD|CBAUDEX)) != B4000000) {
 // follow the standard termios baud rate define
} else {
 ioctl(fd, MOXA_GET_SPECIAL_BAUD_RATE, &speed);
}

Baudrate inaccuracy
Divisor = 921600/Target Baud Rate. (Only Integer part)
ENUM = 8 * (921600/Targer - Divisor) (Round up or down)
Inaccuracy = (Target Baud Rate – 921600/(Divisor + (ENUM/8))) * 100%
E.g.,
To calculate 500000 bps
Divisor = 1, ENUM = 7,
Inaccuracy = 1.7%
*The Inaccuracy should less than 2% for work reliably.

Special Note
1. If the target baudrate is not a special baudrate (e.g. 50, 75, 110, 134, 150, 200, 300, 600, 1200,

1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600), the termios
cflag will be set to the same flag.

2. If you use stty to get the serial information, you will get speed equal to 0.

DO
Using Dout pin 22 to control Dout close nad open , if make Pin 22 pull high being closed and
Pin22 pull low being open.

Usage like:

echo “22 1 1” > /proc/driver/dio The Do will be open

echo “22 1 0” > /proc/driver/dio The Do will be close

77
Chapter 7 Software Lock

“Software Lock” is an innovative technology developed by the Moxa engineering team. It can be
adopted by a system integrator or developer to protect his applications from being copied. An
application is compiled into a binary format bound to the embedded computer and the operating
system (OS) that the application runs on. As long as one obtains it from the computer, he/she can
install it into the same hardware and the same operating system. The add-on value created by the
developer is thus lost.

Moxa’s engineerings used data encryption to develop this protection mechanism for your
applications. The binary file associated with each of your applications needs to undergo an
additional encryption process after you have developed it. The process requires you to install an
encryption key in the target computer.

1. Choose an encryption key (e.g.,”ABigKey”) and install it in the target computer by a pre-

utility program, ‘setkey’.

#setkey ABigKey

Note: set an empty string to clear the encryption key in the target computer by:

#setkey ““

2. Develop and compile your program in the development PC.

3. In the development PC, run the utility program ‘binencryptor’ to encrypt your program with
an encryption key.

#binencryptor yourProgram ABigKey

4. Upload the encrypted program file to the target computerby FTP or NFS and test the program.

The encryption key is a computer-wise key. That is to say, a computer has only one key installed.
Running the program ‘setkey’ multiple times overrides the existing key.

To prove the effectiveness of this software protection mechanism, prepare a target computer that
has not been installed an encryption key or install a key different from that used to encrypt your
program. In any case, the encrypted program fails immediately.

This mechanism also allows the computer with an encryption key to bypass programs that are not
encrypted. Therefore, in the development phase, you can develop your programs and test them in
the target computer cleanly.

88
Chapter 8 UC Finder

UC Finder comes in handy if you forget the IP address of the target computer while you have a
demand for troubleshooting field problems. This utility works by sending a broadcast message
over the LAN to search for IP addresses of target computers. Two versions of UC Finder are
provided. The GUI version works in Windows environments, and the command line utility works
in Linux environments.

The following topics are covered in this chapter:

 Windows UC Finder
 Installing the Software
 Broadcast Search

 Linux ucfinder

ThinkCore W311/321/341 Linux User’s Manual UC Finder

 8-2

Windows UC Finder
The UC Finder utility is used to search the LAN or intranet for Moxa embedded computers.

Installing the Software
1. Once the Setup program starts running, click on Next to proceed.

2. Click on Next when the Select Additional Tools window opens to proceed with the

installation.

ThinkCore W311/321/341 Linux User’s Manual UC Finder

 8-3

3. Click on Next to install program files in the default directory, or select an alternative location.

4. Click on Finish to complete the installation of UC Finder.

Broadcast Search
The Broadcast Search function is used to locate all W311/321/341 units that are connected to the
same LAN as your Windows computer.

Since the Broadcast Search function searches by MAC address and not IP address, all
W311/321/341’s connected to the LAN will be found, regardless of whether or not they are on the
same subnet as the host.

ThinkCore W311/321/341 Linux User’s Manual UC Finder

 8-4

1. Click o n the Broadcast Search button to start searching.

2. The Searching window displays the Model, MAC Address, and IP Address of devices that

were located..

3. When the search is complete, the same information is displayed in the UC Finder window.

NOTE UC Finder is designed to determine the IP addresses of all UC units connected to the same LAN
the host that is running UC Finder. To configure UC’s IP addresses or other configuration
parameters, use Telnet over the network, or connect directly to the serial Console port to access
the W311/321/341’s Console utility.

Linux ucfinder
Copy ucfinder from the Documentation and Software CD to your Linux PC, and then use the
following command to start the program. UC Finder will automatically locate all W311/321/341
units on the LAN, and then report their IP addresses.
#./ucfinder

AA
Appendix A System Commands

busybox (V0.60.4): Linux normal command utility collection
File manager

1. cp copy file
2. ls list file
3. ln make symbolic link file
4. mount mount and check file system
5. rm delete file
6. chmod change file owner & group & user
7. chown change file owner
8. chgrp change file group
9. sync sync file system, let system file buffer be saved to hardware
10. mv move file
11. pwd display now file directly
12. df list now file system space
13. mkdir make new directory
14. rmdir delete directory

Editor
1. vi text editor
2. cat dump file context
3. zcat compress or expand files
4. grep search string on file
5. cut get string on file
6. find find file where are there
7. more dump file by one page
8. test test file exist or not
9. sleep sleep (seconds)
10. echo echo string

Network
1. ping ping to test network
2. route routing table manager
3. netstat display network status
4. ifconfig set network ip address
5. tracerout trace route
6. tftp
7. telnet
8. ftp

ThinkCore W311/321/341 Linux User’s Manual System Commands

 A-2

Process
1. kill kill process
2. ps display now running process

Other
1. dmesg dump kernel log message
2. sty to set serial port
3. zcat dump .gz file context
4. mknod make device node
5. free display system memory usage
6. date print or set the system date and time
7. env run a program in a modified environment
8. clear clear the terminal screen
9. reboot reboot / power off/on the server
10. halt halt the server
11. du estimate file space usage
12. gzip, gunzip compress or expand files
13. hostname show system’s host name

MOXA special utilities
1. backupfs backup file system (user directory)
2. bf built the file system (user directory)
3. kversion show kernel version
4. cat /etc/version show user directory version
5. upramdisk mount ramdisk
6. downramdisk unmount ramdisk

BB
Appendix B Service Information

This appendix shows you how to contact Moxa for information about this and other products, and
how to report problems.

The following topics are covered in this appendix:

 MOXA Internet Services
 Problem Report Form
 Product Return Procedure

ThinkCore W311/321/341 Linux User’s Manual Service Information

 B-2

MOXA Internet Services
Customer satisfaction is our number one concern, and to ensure that customers receive the full
benefit of our products, Moxa Internet Services has been set up to provide technical support, driver
updates, product information, and user’s manual updates.

The following services are provided

E-mail for technical support................................support@moxa.com

World Wide Web (WWW) Site for product information:

http://www.moxa.com

mailto:support@moxa.com
http://www.moxa.com/

ThinkCore W311/321/341 Linux User’s Manual Service Information

 B-3

Problem Report Form

MOXA ThinkCore W311/321/341

Customer name:
Company:
Tel: Fax:
Email: Date:

1. Moxa Product: ThinkCore W311 ThinkCore W321 ThinkCore W341
2. Serial Number: _________________

Problem Description: Please describe the symptoms of the problem as clearly as possible, including any error
messages you see. A clearly written description of the problem will allow us to reproduce the symptoms, and
expedite the repair of your product.

ThinkCore W311/321/341 Linux User’s Manual Service Information

 B-4

Product Return Procedure

For product repair, exchange, or refund, the customer must:

 Provide evidence of original purchase.

 Obtain a Product Return Agreement (PRA) from the sales representative or dealer.

 Fill out the Problem Report Form (PRF). Include as much detail as possible for a shorter
product repair time.

 Carefully pack the product in an anti-static package, and send it, pre-paid, to the dealer. The
PRA should be visible on the outside of the package, and include a description of the problem,
along with the return address and telephone number of a technical contact.

	1. Introduction
	Overview
	Software Architecture
	Journaling Flash File System (JFFS2)
	Software Package

	2. Getting Started
	Powering on the W311/321/341
	Connecting the W311/321/341 to a PC
	Serial Console
	Telnet Console
	SSH Console

	Configuring the Ethernet Interface
	Modifying Network Settings with the Serial Console
	Modifying Network Settings over the Network

	Configuring the WLAN
	IEEE802.11a/b/g

	Using WPA_SUPPLICANT to Support WPA and WPA2
	SD Slot and USB for Storage Expansion
	Test Program—Developing Hello.c
	Installing the Tool Chain (Linux)
	Checking the Flash Memory Space
	Compiling Hello.c
	Uploading and Running the “Hello” Program

	Developing Your First Application
	Testing Environment
	Compiling tcps2.c
	Uploading and Running the “tcps2-release” Program
	Testing Procedure Summary

	3. Managing Embedded Linux
	System Version Information
	System Image Backup
	Upgrading the Firmware
	Loading Factory Defaults
	Backing Up the User Directory
	Deploying the User Directory to Additional W311/321/341 Units

	Enabling and Disabling Daemons
	Setting the Run-Level
	Adjusting the System Time
	Setting the Time Manually
	NTP Client
	Updating the Time Automatically

	Cron—Daemon to Execute Scheduled Commands

	4. Managing Communications
	Telnet / FTP
	DNS
	Web Service—Apache
	Installing PHP for Apache Web Server
	IPTABLES
	NAT
	NAT Example
	Enabling NAT at Bootup

	Dial-up Service—PPP
	PPPoE
	NFS (Network File System)
	Setting up the W311/321/341 as an NFS Client

	Mail
	SNMP
	OpenVPN

	5. Tool Chains for Application Development
	Linux Tool Chain
	Steps for Installing the Linux Tool Chain
	Compilation for Applications
	On-Line Debugging with GDB

	Windows Tool Chain
	System Requirements for Windows Tool Chain
	Steps for Installing Windows Tool Chain
	Using the BASH Shell
	Compilation for Applications
	On-Line Debugging with Insight

	6. Programmer’s Guide
	Flash Memory Map
	Device API
	RTC (Real Time Clock)
	Buzzer
	WDT (Watch Dog Timer)
	UART
	DO

	7. Software Lock
	8. UC Finder
	Windows UC Finder
	Installing the Software
	Broadcast Search

	Linux ucfinder

	A. System Commands
	busybox (V0.60.4): Linux normal command utility collection
	File manager
	Editor
	Network
	Process
	Other
	MOXA special utilities

	B. Service Information
	MOXA Internet Services
	Problem Report Form
	Product Return Procedure

